ИОНИН ВАЛЕРИЙ АЛЕКСАНДРОВИЧ

ФИБРИЛЛЯЦИЯ ПРЕДСЕРДИЙ У БОЛЬНЫХ С МЕТАБОЛИЧЕСКИМ СИНДРОМОМ: МОЛЕКУЛЯРНО-ГЕНЕТИЧЕСКИЕ ПРЕДИКТОРЫ РАЗВИТИЯ, ПРОГРЕССИРОВАНИЯ И ПОДХОДЫ К ЛЕЧЕНИЮ

3.1.20. Кардиология

АВТОРЕФЕРАТ

диссертации на соискание ученой степени доктора медицинских наук

Работа выполнена на кафедре терапии факультетской с курсом эндокринологии, кардиологии с клиникой им. акад. Г.Ф. Ланга федерального государственного бюджетного образовательного учреждения высшего образования «Первый Санкт-Петербургский государственный медицинский университет имени академика И.П. Павлова» Министерства здравоохранения Российской Федерации.

Научный консультант:

Баранова Елена Ивановна – доктор медицинских наук, профессор

Официальные оппоненты:

Сайганов Сергей Анатольевич — доктор медицинских наук, профессор, федеральное государственное бюджетное образовательное учреждение высшего образования «Северо-Западный государственный медицинский университет имени И.И. Мечникова» Министерства здравоохранения Российской Федерации, ректор университета, кафедра госпитальной терапии и кардиологии им М.С. Кушаковского, заведующий кафедрой.

Чумакова Галина Александровна — доктор медицинских наук, профессор, федеральное государственное бюджетное образовательное учреждение высшего образования «Алтайский государственный медицинский университет» Министерства здравоохранения Российской Федерации, кафедра терапии и общей врачебной практики с курсом дополнительного профессионального образования, профессор кафедры.

Напалков Дмитрий Александрович - доктор медицинских наук, доцент, федеральное государственное автономное образовательное учреждение высшего образования «Первый Московский государственный медицинский университет имени И.М. Сеченова» Министерства здравоохранения Российской Федерации (Сеченовский Университет), кафедра факультетской терапии №1, профессор кафедры.

Ведущая организация: федеральное государственное бюджетное военное образовательное учреждение высшего образования «Военно-медицинская академия имени С.М. Кирова» Министерства обороны Российской Федерации.

Защита диссертации состоится «»	2024 г. в «» часов
на заседании диссертационного совета 21.2.050.04	на базе федерального
государственного бюджетного образовательного учрежд	ения высшего образования
«Первый Санкт-Петербургский государственный медиці	инский университет имени
академика И.П. Павлова» Министерства здравоохранен	ия Российской Федерации
(197022, Санкт-Петербург, ул. Льва Толстого, д.6-8,	гел. 8(812)3387104, e-mail:
usovet@spb-gmu.ru) в зале заседаний Ученого Совета.	•

С диссертацией можно ознакомиться в научной библиотеке федерального государственного бюджетного образовательного учреждения высшего образования «Первый Санкт-Петербургский государственный медицинский университет имени академика И.П. Павлова» Министерства здравоохранения Российской Федерации и на сайте www.1spbgmu.ru.

Автореферат разослан «	<i>))</i>	2024 гола
автоосостат разослав у	"	2024 10/10

Ученый секретарь диссертационного совета

доктор медицинских наук, доцент

Беляева Ольга Дмитриевна

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования

Фибрилляция предсердий (ФП) – одно из самых часто встречающихся нарушений ритма сердца, распространенность которого у взрослых составляет от 2 до 4% (Hindricks G. et al., 2021; Joglar J.A. et al., 2023). Данная аритмия является важной медико-социальной проблемой, поскольку способствует увеличению числа госпитализаций, инвалидизации, смертности, снижению когнитивной функции и качества жизни пациентов, а также увеличению экономических затрат на лечение больных (Кобалава Ж.Д. с соавт., 2019; Ардашев А.В. с соавт., 2021; Joglar J.A. et al., 2023). Выделяют модифицируемые и немодифицируемые факторы риска ФП, к немодифицируемым факторам относятся: возраст старше 65 лет, мужской пол и наследственная предрасположенность. Опубликованы данные, согласно которым отягощенная наследственность по ФП повышает риск развития этой аритмии у родственников первой степени родства на 21,4% (Pastori D. et al., 2020). Исследование с участием более 1 миллиона человек выявило 142 независимых варианта в 111 локусах, соответствующих 151 гену-кандидату, потенциально участвующих в патогенезе ФП (Nielsen J.B. et al., 2018). Вместе с тем, генетические предикторы ФП и других сердечно-сосудистых заболеваний могут сочетаться, осложняя выбор генов-кандидатов при данной аритмии.

Среди модифицируемых факторов риска ФП наибольшее значение имеют артериальная гипертензия (АГ) и ожирение (Hindricks G. et al., 2021; Joglar J.A. et al., 2023; Mancia G. et al., 2023). При ФП часто встречаются и другие компоненты метаболического синдрома (МС) – нарушения углеводного и липидного обмена, а ожирение нередко сочетается с синдромом обструктивного апноэ сна (СОАС) (Rafaqat S. et al., 2021; Lin C.H. et al., 2022). По данным эпидемиологических исследований наличие МС значительно увеличивает риск развития ФП (Аhn H.J. et al., 2021). Распространенность МС и его компонентов в России высока, что может способствовать росту заболеваемости ФП в российской популяции (Ротарь О.П. с соавт., 2012). АГ и ожирение вызывают ремоделирование сердца, хроническое субклиническое воспаление и фиброз миокарда. В последнее время активно изучается роль биомаркеров фиброза и воспаления в развитии ФП, в том числе при метаболических нарушениях (Hijazi Z. et al., 2018; Georgakopoulos C. et al., 2019). Однако значение провоспалительных и профиброгенных субстанций при ФП в сочетании с МС не определено.

Существует мнение, что ФП может возникать также вследствие активации ренинангиотензин-альдостероновой системы (РААС). В частности, повышенная концентрация альдостерона в крови стимулирует развитие фиброза и увеличивает риск развития ФП (Tsai C.H. et al., 2021). Активность PAAC может определяться носительством определенных генотипов генов, оперирующих в этой системе (Tsai C.T. et al., 2004). Ранее установлена связь Т аллеля rs179998 варианта гена альдостеронсинтазы (*CYP11B2*) с риском ФП (Павлова О.С. с соавт., 2016; Wang X. et al., 2019; Gouissem I. et al., 2022). Вместе с тем, распределение генотипов и встречаемость аллелей rs179998 варианта гена альдостеронсинтазы у пациентов с ФП и МС, в том числе в Северо-Западном регионе России, не изучена. Ангиотензин II и альдостерон увеличивают экспрессию трансформирующего фактора роста-бета1 (TGF-beta1) - ключевого фактора сигнального каскада фиброгенеза в миокарде предсердий (Lichtman M.K. et al., 2016). Существуют данные, свидетельствующие о том, что носительство аллеля G(+915) гена трансформирующего фактора роста-бета1 (TGFB1) ассоциировано с повышенной секрецией TGF-beta1 и кардиоваскулярными нарушениями (Wang Y. et al., 2010, Barsova R.M. et al., 2012). Связь вариантов гена TGFB1 и ФП изучена недостаточно, а при анализе данных генетических исследований необходимо учитывать возможную популяционную вариабельность (Zheng W.X., 2013). Современные рекомендации по ведению больных с ФП определяют стратегию лечения, а выбор тактики зависит от наличия коморбидной патологии у больного, то есть требует персонализированного подхода. Можно полагать, что наличие ожирения, неконтролируемой АГ, сахарного диабета (СД) могут определять недостаточную эффективность антиаритмической терапии (ААТ) и радиочастотной аблации (РЧА), вместе с тем, проведенные в последние годы исследования не выявили предикторы эффективности антиаритмической терапии (Mohanty S. et al., 2012; Joglar J.A. et al., 2023).

Исходя из этого, комплексное изучение клинико-морфометрических и молекулярногенетических предикторов развития и прогрессирования $\Phi\Pi$ у пациентов с MC актуально, а определение факторов риска прогрессирования аритмии и прогнозирования отсутствия эффекта от медикаментозной и интервенционной терапии может иметь большое значение для кардиологии.

Степень разработанности темы исследования

В поисковой системе National Library of Medicine (PubMed®) по запросу «фибрилляция предсердий и метаболический синдром» представлено 502 публикации, включая 35 клинических исследований и 7 мета-анализов по данной проблеме, а наибольшее число статей опубликовано после 2019 года. При поиске в российской электронной системе публикаций elibrary.ru по ключевому слову «фибрилляция предсердий» за все время опубликовано 4196 статей, а при включении в поиск термина «метаболический синдром» выявлено лишь 256 работ, посвященных данной теме. Ранее исследовалась роль факторов риска и отдельных компонентов метаболического синдрома в развитии фибрилляции предсердий, в том числе провоспалительных и профиброгенных маркеров. Однако, до настоящего времени нет четкого представления о патогенетических механизмах формирования фибрилляции предсердий при метаболическом синдроме.

Несмотря на наличие клинических рекомендаций по фибрилляции предсердий, ожирению, артериальной гипертензии, нарушениям липидного и углеводного обменов, не вполне определены подходы к персонализированному ведению больных с фибрилляцией предсердий в сочетании с метаболическим синдромом.

Согласно информации, представленной в базе данных RUSeq, частота аллеля T rs1799998 варианта гена CYP11B2 в общей популяции Европейской части России составляет 0,47, а аллельная частота для варианта rs1800471 гена TGFB1 не установлена. Аллельная частота rs1799998 варианта гена CYP11B2 и rs1800471 варианта гена TGFB1 у больных с $\Phi\Pi$ в сочетании с метаболическим синдромом в российской популяции не изучена. Исследований, посвященных изучению роли генов CYP11B2 и TGFB1 в развитии фиброза миокарда и оценке прогностического значения этих генов у пациентов с фибрилляцией предсердий в сочетании с метаболическим синдромом, ранее не проводилось.

Таким образом, работ, посвященных комплексному изучению молекулярногенетических механизмов, клинических и морфометрических особенностей формирования и прогрессирования фибрилляции предсердий у больных с метаболическим синдромом, не найдено.

Цель исследования

Определить молекулярно-генетические предикторы развития, прогрессирования фибрилляции предсердий и разработать персонализированный подход к лечению фибрилляции предсердий у пациентов с метаболическим синдромом.

Задачи исследования

- 1. Изучить встречаемость фибрилляции предсердий, компонентов метаболического синдрома, других факторов риска данной аритмии и проанализировать терапию на амбулаторном этапе лечения пациентов г. Санкт-Петербурга.
- 2. Установить особенности ремоделирования сердечно-сосудистой системы у пациентов с фибрилляцией предсердий в сочетании с метаболическим синдромом и определить прогностическую роль эпикардиальной жировой ткани, показателей, характеризующих сосудистую жесткость и нарушений дыхания во сне, в развитии данной аритмии.
- 3. Установить распределение генотипов и аллельную частоту генов альдостеронсинтазы (rs1799998 вариант) и трансформирующего фактора роста-бета1 (rs1800471 вариант); определить концентрацию альдостерона и TGF-beta1 у больных с фибрилляцией предсердий с метаболическим синдромом, без метаболического синдрома, в группе сравнения; выявить молекулярно-генетические предикторы развития,

прогрессирования фибрилляции предсердий и отсутствия эффективности медикаментозной терапии и интервенционного лечения.

- 4. Определить концентрацию провоспалительных и профиброгенных биомаркеров, циркулирующих в крови больных с фибрилляцией предсердий в сочетании с метаболическим синдромом, и установить влияние этих факторов на ремоделирование сердечно-сосудистой системы, прогрессирование фибрилляции предсердий и эффективность лечения.
- 5. Оценить степень выраженности и распространенность фиброза миокарда левого предсердия и установить факторы, влияющие на его формирование у пациентов с фибрилляцией предсердий в сочетании с метаболическим синдромом.
- 6. Выявить предикторы развития, прогрессирования фибрилляции предсердий, риска сердечно-сосудистых осложнений, определить возможные причины отсутствия эффекта антиаритмической фармакотерапии и радиочастотной аблации устьев легочных вен и разработать алгоритм персонализированного выбора лечения пациентов с фибрилляцией предсердий и метаболическим синдромом.

Научная новизна исследования

На основании комплексного изучения патогенетических механизмов развития и прогрессирования фибрилляции предсердий, впервые установлены предикторы высокого риска развития этой аритмии у пациентов с метаболическим синдромом — высокие значения интерлейкина-6, галектина-3 и N-концевого предшественника коллагена III типа в крови.

У больных с фибрилляцией предсердий в сочетании с метаболическим синдромом впервые установлено распределение генотипов и встречаемость аллелей rs1800471 варианта гена *TGFB1* и rs1799998 варианта гена альдостеронсинтазы в Северо-Западном регионе Российской Федерации и доказано, что у пациентов с метаболическим синдромом – носителей GG(+915) генотипа rs1800471 варианта гена TGFB1 риск фибрилляции предсердий в 2,4 раза выше, чем у носителей других генотипов этого гена.

Впервые показано, что наличие G аллеля rs1800471варианта гена *TGFB1* у пациентов с метаболическим синдромом ассоциировано с высокой концентрацией в крови трансформирующего фактора роста-бета1, что у этих больных повышает риск первого пароксизма фибрилляции предсердий. На основании полученных данных впервые доказано, что у пациентов с фибрилляцией предсердий в сочетании с метаболическим синдромом носительство генотипа (-344)ТТ и аллеля Т rs1799998 варианта гена альдостеронсинтазы ассоциировано с увеличением концентрации альдостерона в крови и повышением риска диффузного фиброза миокарда левого предсердия, отсутствием эффекта от антиаритмической фармакотерапии и рецидивами фибрилляции предсердий в течение года после радиочастотной аблации устьев легочных вен.

У больных с фибрилляцией предсердий в сочетании с метаболическим синдромом впервые установлено, что наиболее значимыми маркерами, увеличивающими риск диффузного фиброза миокарда левого предсердия, являются высокие концентрации галектина-3 и альдостерона. У пациентов с фибрилляцией предсердий и метаболическим синдромом в сочетании с обструктивными нарушениями дыхания во сне маркерами диффузного фиброза миокарда левого предсердия являются высокие концентрации в крови ростового фактора дифференцировки-15, галектина-3 и N-концевых предшественников коллагена I, III типов. Впервые предложена формула оценки степени выраженности фиброза миокарда левого предсердия у пациентов с фибрилляцией предсердий в сочетании с метаболическим синдромом, включающая концентрацию в крови ростового фактора дифференцировки-15, толщину эпикардиальной жировой ткани и индекс апноэ/гипопноэ во сне.

Установлен ранее неизвестный фактор риска трансформации пароксизмальной фибрилляции предсердий в персистирующую или постоянную форму у пациентов с метаболическим синдромом — высокая концентрация в крови N-концевого предшественника коллагена III типа. Получены новые данные о предикторах развития сердечно-сосудистой смерти, нефатального инфаркта или нефатального инсульта у пациентов с фибрилляцией

предсердий в сочетании с метаболическим синдромом – увеличение толщины эпикардиальной жировой ткани и концентрации в крови ростового фактора дифференцировки-15.

В работе впервые установлены прогностические факторы недостаточной эффективности антиаритмической терапии у больных с фибрилляцией предсердий в сочетании с метаболическим синдромом — давность аритмии свыше четырех лет и высокая концентрация интерлейкина-6 в крови. Доказано, что риск рецидива фибрилляции предсердий в течение года после изоляции устьев легочных вен методом радиочастотной аблации у пациентов с метаболическим синдромом определяется увеличенной толщиной эпикардиальной жировой ткани, высокой концентрацией галектина-3 и ростового фактора дифференцировки-15 в крови, наличием (-344)ТТ и аллеля Т гs1799998 варианта гена альдостеронсинтазы.

На основании полученных данных создан алгоритм персонализированного выбора стратегии контроля синусового ритма у пациентов с фибрилляцией предсердий в сочетании с метаболическим синдромом.

Теоретическая и практическая значимость работы

Расширены научные представления о патогенетических механизмах развития и прогрессирования фибрилляции предсердий у пациентов с метаболическим синдромом. Установлены молекулярно-генетические, морфометрические и клинические предикторы формирования фибрилляции предсердий при метаболическом синдроме: биомаркеры фиброза (трансформирующий фактор роста-бета1, галектин-3, альдостерон, N-концевой предшественник коллагена III типа) и воспаления (интерлейкин-6, С-реактивный белок), наличие определенных генотипов вариантов генов трансформирующего фактора роста-бета1 и альдостеронсинтазы, толщина эпикардиальной жировой ткани и степень тяжести обструктивных нарушений дыхания во сне. Выявлены молекулярно-генетические факторы, влияющие на формирование распространенного и выраженного фиброза миокарда левого предсердия у пациентов с фибрилляцией предсердий.

Установлены предикторы неэффективности антиаритмической фармакотерапии у больных с метаболическим синдромом — длительность фибрилляции предсердий более четырех лет, увеличенный индекс объема левого предсердия, высокая концентрация интерлейкина-6 в крови и носительство генотипа (-344)ТТ и аллеля Т гs1799998 варианта гена альдостеронсинтазы. Определены маркеры риска рецидива фибрилляции предсердий в течение года после радиочастотной изоляции устьев легочных вен у пациентов с метаболическим синдромом — высокие концентрации галектина-3, ростового фактора дифференцировки-15, увеличение толщины эпикардиальной жировой ткани, гомозиготное и гетерозиготное носительство аллеля Т rs1799998 варианта гена альдостеронсинтазы.

Риск фатальных и нефатальных сердечно-сосудистых осложнений у пациентов с фибрилляцией предсердий и метаболическим синдромом обусловлен увеличением числа компонентов метаболического синдрома и толщины эпикардиальной жировой ткани, повышением концентрации в крови ростового фактора дифференцировки-15.

Разработан и предложен к применению алгоритм персонализированной тактики ведения пациентов с фибрилляцией предсердий в сочетании с метаболическим синдромом. Сведения об установленных предикторах развития, прогрессирования, прогнозирования эффективности антиаритмической фармакотерапии и интервенционного лечения у больных с фибрилляцией предсердий в сочетании с метаболическим синдромом могут быть использованы в практическом здравоохранении для оптимизации тактики ведения этих пациентов.

Методология и методы исследования

Диссертационное исследование было выполнено на базе федерального государственного бюджетного образовательного учреждения высшего образования «Первый Санкт-Петербургский государственный медицинский университет имени академика И.П. Павлова» Министерства здравоохранения Российской Федерации и включало 3 этапа.

На **первом этапе** (ретроспективное исследование) из 34 878 медицинских карт пациентов кардиологического профиля – жителей Санкт-Петербурга отобраны медицинские документы 3134 больных с ФП, у которых проведен анализ встречаемости метаболического

синдрома и его компонентов, коморбидных заболеваний, проанализирована адекватность антикоагулянтной и антиаритмической терапии.

На **втором этапе** (одномоментное сравнительное исследование, проведенное по принципу «случай-контроль») обследованные были разделены на 4 группы: больные с фибрилляцией предсердий в сочетании с метаболическим синдромом (n=208), больные с фибрилляцией предсердий без метаболического синдрома (n=77), пациенты с метаболическим синдромом без фибрилляции предсердий (n=233) и практически здоровые обследованные без сердечно-сосудистых заболеваний и метаболических нарушений (n=182). Всем включенным в исследование проведено комплексное обследование, в котором, наряду с клинико-анамнестическими и физикальными данными, оценивались показатели лабораторных, инструментальных и молекулярно-генетических исследований.

На **третьем этапе** (проспективное исследование) проведено наблюдение за обследованными в трех группах: наблюдение в течение 5 лет за обследованными без фибрилляции предсердий с целью выявления аритмии и факторов риска ее развития (n=550); наблюдение в течение 12-ти месяцев за пациентами с фибрилляцией предсердий после радиочастотной аблации устьев легочных вен с целью определения предикторов отсутствия эффекта и выявления факторов риска рецидива аритмии (n=135); наблюдение в течение 5 лет за пациентами с фибрилляцией предсердий с целью определения комбинированной конечной точки (сердечно-сосудистая смерть, нефатальный инфаркт или нефатальный инсульт) для оптимизации персонализированного подхода к лечению (n=320).

Комплекс методов, использованных в исследовании, соответствует современному уровню обследования больных в кардиологии, а применяемые методы статистической обработки данных отвечают поставленной цели и задачам исследования. Исследование выполнено в рамках гранта РНФ № 17-75-30052, НИОКТР № 223020200608-1 и НИОКТР № 123022700073-7.

Положения, выносимые на защиту

- 1. Распространенность фибрилляции предсердий у жителей Санкт-Петербурга на амбулаторном этапе оказания медицинской помощи высока и в последние годы отмечается отчетливое увеличение частоты данного нарушения ритма. Компоненты метаболического синдрома (артериальная гипертензия и ожирение) наиболее часто встречающиеся коморбидные состояния у пациентов с фибрилляцией предсердий. Риск развития фибрилляции предсердий в значительной степени обусловлен наличием метаболического синдрома, а прогрессирование аритмии и риск сердечно-сосудистых осложнений при метаболическом синдроме возрастает с увеличением числа его компонентов, длительности метаболического синдрома, выраженности эпикардиального ожирения, распространенностью и тяжестью фиброза миокарда левого предсердия.
- 2. Молекулярно-генетическими факторами, участвующими в патогенезе фибрилляции предсердий у пациентов с метаболическим синдромом являются: вариант rs1800471 гена трансформирующего фактора роста-бета1, вариант rs1799998 гена альдостеронсинтазы, циркулирующие в крови маркеры воспаления (интерлейкин-6, С-реактивный белок) и фиброза (трансформирующий фактор роста-бета1, альдостерон, ростовой фактор дифференцировки-15, галектин-3, N-концевой предшественник коллагена III типа), повышение концентрации которых ассоциировано с увеличением толщины эпикардиальной жировой ткани.
- 3. Предикторами отсутствия эффекта антиаритмической фармакотерапии у больных с фибрилляцией предсердий в сочетании с метаболическим синдромом, наряду с длительностью фибрилляции предсердий и увеличением индекса объема левого предсердия, являются: гетеро-или гомозиготное носительство аллеля Т гs1799998 варианта гена альдостеронсинтазы и повышение концентрации в крови интерлейкина-6, а увеличение толщины эпикардиальной жировой ткани, повышение концентраций в крови галектина-3 и ростового фактора дифференцировки-15, наличие гетеро- или гомозиготного носительства аллеля Т rs1799998 варианта гена альдостеронсинтазы позволяют прогнозировать риск рецидива данной аритмии в течение года после радиочастотной аблации и определяет персонализированный подход к ведению этих пациентов.

Степень достоверности и апробация результатов исследования

достоверность полученных результатов и обоснованность выводов обеспечиваются использованием в исследовании современных и общепринятых методов, адекватных заявленной цели и задачам; использованием сертифицированных реагентов и оборудования; тщательным планированием дизайна исследования; использованием методов статистического анализа, соответствующих дизайну исследования; согласованностью полученных результатов и их сопоставимостью с результатами других авторов; обсуждением результатов исследований на международных и всероссийских научных конференциях; публикацией результатов исследований в ведущих рецензируемых научных журналах. Результаты диссертационной работы доложены и обсуждены на Международных и Российских конференциях: 28-й и 29-й Европейских встречах по Артериальной гипертензии и Кардиоваскулярной профилактике (Барселона, Испания, 2018), (Милан, Италия, 2019); 22й Конгресс Европейской ассоциации сердечно-сосудистой визуализации (EACVI) (Милан, Италия, 2018); 87-й Конгресс Европейской ассоциации атеросклероза (EAS) (Маастрихт, Нидерланды, 2019); Конгресс Европейской ассоциации сердечного ритма (EHRA) (онлайн, 2021); XIII и XIV Международный конгресс «Кардиостим» 2018, 2020 (Санкт-Петербург); Форум молодых аритмологов 2018 (Санкт-Петербург); 4-й и 5-й Международный форум антикоагулянтной и антиагрегантной терапии (ФАКТ plus) (Москва, 2019, 2020); Российский (с международным участием, 2019); «РКО для национальный конгресс кардиологов профессионалов и пациентов – от первичной помощи к новейшим технологиям» 2019 (Екатеринбург); V Российская научно-практическая конференция «Клиническая сомнология» 2019 (Москва); 27-й Российский национальный конгресс «Человек и лекарство» (Москва, 2020); Российский национальный конгресс кардиологов (Казань, 2020); І Научнопрактическая конференция терапевтов Амурской области 2021 (Благовещенск); ІХ-й Всероссийский съезд аритмологов (Санкт-Петербург, 2021); Региональный конгресс РКО 2022 вызовы и новые достижения, посвященный 60-летию кардиологического общества 2022 (Белгород); III Всероссийская конференция «Каспийские Встречи. Передовые технологии в области диагностики и лечения сердечно-сосудистых заболеваний» (Астрахань, 2022); Российский национальный конгресс кардиологов: Кардиология 2022: новая стратегия в новой реальности – открытость, единство, суверенитет (Казань, 2022); 4-й Всероссийский научно-образовательный форум с международным участием «Кардиология XXI века: альянсы и потенциал» (Томск, 2023); Санкт-Петербургский междисциплинарный Конгресс с международным участием: Ожирение, сахарный диабет и коморбидные заболевания (Санкт-Петербург, 2023); Х съезд кардиологов Сибирского Федерального Округа «Сибирская кардиология 2023: новые вызовы и пути развития» Российский (Иркутск, 2023); национальный конгресс кардиологов: Российское кардиологическое общество – 60 лет на страже сердца (Москва, 2023).

Личный вклад автора

Автор непосредственно участвовал во всех этапах выполнения научной работы: формировании цели, задач и разработке дизайна основных этапов исследования, в разработке анкет, создании базы данных, организации обследования и наблюдения за пациентами. Автором лично проведен анализ клинических, лабораторных, инструментальных данных пациентов, включенных в диссертационное исследование, а также анализ результатов молекулярногенетических исследований. Научное обоснование, обобщение полученных результатов, статистическая обработка данных и публикация основных результатов, а также написание и оформление диссертации выполнены лично автором.

Публикации

По теме диссертационной работы опубликовано 19 статей в журналах, рекомендованных Высшей аттестационной комиссией при Министерстве науки и высшего образования Российской Федерации (из которых 13 статей опубликованы в журналах индексируемых в SCOPUS), а также 1 статья в иностранном журнале (Q1) и 2 учебно-методических пособия.

Внедрение результатов исследования

Результаты исследования внедрены в практическую работу амбулаторного консультативно-диагностического центра поликлиники № 31 ФГБОУ ВО ПСПбГМУ им. И.П. Павлова Минздрава России и НИИ сердечно-сосудистых заболеваний Научно-клинического исследовательского центра ФГБОУ ВО ПСПбГМУ им. И.П. Павлова Минздрава России. Материалы диссертации используются в учебном процессе кафедры терапии факультетской с курсом эндокринологии, кардиологии с клиникой им. акад. Г.Ф. Ланга

Объем и структура диссертации

Диссертация изложена на 460 страницах машинописного текста и состоит из введения, обзора литературы, материалов и методов, результатов собственных исследований, обсуждения, выводов, практических рекомендаций, списка сокращений, списка литературы. Работа содержит 123 таблицы и 43 рисунка. Указатель литературы включает 617 источников: 89 российских и 528 зарубежных авторов.

СОДЕРЖАНИЕ РАБОТЫ

Материал и методы исследования

Диссертационное исследование выполнено на базе федерального государственного бюджетного образовательного учреждения высшего образования «Первый Санкт-Петербургский государственный медицинский университет имени академика И.П. Павлова» Министерства здравоохранения Российской Федерации и включало 3 этапа.

На первом этапе (ретроспективное исследование) из 34 878 медицинских карт пациентов кардиологического профиля — жителей Санкт-Петербурга отобраны медицинские документы 3134 больных с $\Phi\Pi$, у которых проведен анализ встречаемости метаболического синдрома и его компонентов, коморбидных заболеваний, проанализирована адекватность антикоагулянтной и антиаритмической терапии.

На втором этапе (одномоментное сравнительное исследование, проведенное по принципу «случай-контроль») обследованные были разделены на 4 группы: больные с фибрилляцией предсердий в сочетании с метаболическим синдромом (n=208), больные с фибрилляцией предсердий без метаболического синдрома (n=77), пациенты с метаболическим синдромом без фибрилляции предсердий (n=233) и практически здоровые обследованные без сердечно-сосудистых заболеваний и метаболических нарушений (n=182).

Критерии включения в исследование: мужчины и женщины в возрасте от 35 до 65 лет; МС, установленный согласно критериям Международной Федерации специалистов по сахарному диабету (IDF, 2005) при наличии 3-х и более компонентов (для пациентов с МС); ФП, документально зарегистрированная по данным 12-канальной электрокардиограммы (ЭКГ) или 12-канального суточного мониторирования ЭКГ (для больных с ФП); наличие подписанного информированного согласия на участие в исследовании.

Критерии не включения в исследование: клапанная патология (митральная недостаточность 2-й и более высокой степени, митральный стеноз, аортальная недостаточность 2-й и более высокой степени, аортальный стеноз) и врожденные пороки сердца; клинически значимая и/или подтвержденная по результатам исследований с физической нагрузкой ИБС, инфаркт миокарда, реваскуляризация миокарда; XCH II-IV функционального класса, ХСН с ФВ менее 50%, острая сердечная недостаточность или декомпенсация ХСН; травмы, операции и хирургические вмешательства на сердце; патология щитовидной железы, первичный альдостеронизм, синдром Иценко-Кушинга и другие эндокринные заболевания, являющиеся причиной вторичной АГ; СД, для лечения которого необходима инсулинотерапия или с уровнем гликозилированного гемоглобина более 10%; патология легких, печени и почек с нарушением их функции и развитием недостаточности данных органов; системные и острые воспалительные заболевания, а также хронические заболевания в стадии обострения; онкологические заболевания на момент включения в исследование и ранее в анамнезе; беременность и лактация у женщин; любые формы наркомании и алкоголизма; отказ пациента от участия в исследовании.

Всем пациентам, включенным во второй и третий этапы исследования, проведено комплексное обследование, в котором, наряду с клинико-анамнестическими и физикальными данными, оценивались показатели лабораторных, инструментальных и молекулярноисследований. Эхокардиографическое исследование генетических проводилось трансторакально на аппарате Vivid 7 General Electric (США). Толщину эпикардиальной жировой ткани (ТЭЖ) измеряли перпендикулярно свободной стенке правого желудочка в конце систолы в течение 3 сердечных циклов. Оценка сосудистого ремоделирования выполнялась у 760 обследованных с помощью сфигмоманометра VaSera VS-1500N (Fukuda, Япония) и аппланационная тонометрия на аппарате Sphygmocor CvMS (AtCor Medical Pty. Ltd., Австралия). Всем обследованным проводился скрининг COAC с помощью опросника STOP-BANG и при выявлении среднего или высокого риска COAC выполнялось кардиореспираторное мониторирование во время сна (KPM) SOMNOlab 2 Polygraphy system (Loewenstein Medical, Weinmann, Германия).

Образцы плазмы и сыворотки крови, предназначенные для определения биомаркеров фиброза (TGF-beta1, галектин-3, альдостерон, GDF-15, CTGF, PINP, PIIINP) и воспаления (ФНО-альфа, ИЛ-6, СРБ, КТ-1) были центрифугированы после взятия крови и хранились в морозильной камере при температуре $-40\,^{\circ}$ С для дальнейшего определения концентрации изучаемых биомаркеров с помощью стандартных наборов иммуноферментного анализа.

В исследование генетических факторов риска $\Phi\Pi$ у пациентов с MC включено 526 обследованных, которым проведено определение вариантов rs1799998 C(-344)Т гена альдостеронсинтазы (*CYP11B2*) и вариантов rs1800471 G(+915)С гена трансформирующего фактора роста-бета1 (*TGFB1*). В данный фрагмент исследования включены 111 больных с $\Phi\Pi$ и MC, 121 пациент с MC без $\Phi\Pi$ и 66 пациентов с $\Phi\Pi$ без MC. Группу контроля составили 228 обследованных без патологии сердечно-сосудистой системы, метаболических нарушений и $\Phi\Pi$.

Перед выполнением РЧА в условиях рентгеноперационной с использованием нефлюороскопической системы электроанатомического картирования CARTO 3 (Biosense Webster, USA) проводилась оценка фиброза левого предсердия (ЛП) у 79 пациентов. Пороговое значение напряжения 0,2-0,5 мВ трактовалось как выраженный фиброз (область низкого напряжения), участки с напряжением 0,5-0,7 как легкий/умеренный фиброз, а области с вольтажом >0,7 мВ как нефиброзный миокард (область нормального напряжения).

На третьем этапе (проспективное исследование) проведено наблюдение за обследованными в трех группах: наблюдение в течение 5 лет за обследованными без фибрилляции предсердий с целью выявления аритмии и факторов риска ее развития (n=550); наблюдение в течение 12-ти месяцев за пациентами с фибрилляцией предсердий после радиочастотной аблации устьев легочных вен с целью определения предикторов отсутствия эффекта и выявления факторов риска рецидива аритмии (n=135); наблюдение в течение 5 лет за пациентами с фибрилляцией предсердий с целью определения комбинированной конечной точки (сердечно-сосудистая смерть, нефатальный инфаркт или нефатальный инсульт) для оптимизации персонализированного подхода к лечению (n=320).

Статистический анализ

Оценка нормальности распределения числовых переменных проводилась с помощью критериев Колмогорова-Смирнова (для больших выборок) и Шапиро-Уилка (для малых выборок). В зависимости от вида распределения количественные переменные, подчиняющиеся закону нормального распределения, представлены средним значением (М)±стандартное отклонение (σ). Для сравнения в независимых группах показателей с нормальным распределением был использован параметрический непарный t-тест Стьюдента. При распределении количественных показателей, отличающемся от нормального, данные представлены в виде медианы (Ме) с указанием межквартильных интервалов (25%-75%), а для сравнения в независимых группах таких показателей использован непараметрический U-тест Манна-Уитни. Множественные сравнения в группах (более двух) в параметрической статистике проводились с помощью однофакторного дисперсионного анализа (ANOVA), а для

непараметрической статистики – критерий Краскала-Уоллиса. При этом учитывалась поправка Бонферрони. Сравнение частотных величин проводилось с помощью χ^2 -критерия Пирсона. Статистически значимыми считали различия при p<0,05. При оценке значимости коэффициента корреляции использованы критерии Пирсона (r) при нормальном распределении и Спирмана (Rho) при ненормальном распределении показателей. Также использовались методы линейного однофакторного и многофакторного регрессионного анализов при оценке влияния факторов на количественные переменные для прогнозирования вероятности наступления события по имеющимся данным с расчетом отношения шансов (ОШ). Для расчета влияния независимых переменных (предикторов) на зависимую переменную (событие) с бинарным значением (0 или 1) использовался метод логистической регрессии. Расчет относительного риска (ОР) также проводился с помощью четырехпольной таблицы сопряженности с использованием точного критерия Фишера. Для определения точки разделения параметров и порогового значения показателей строилась характеристическая кривая (ROC), площадь под которой (AUC) представлена в виде ее значения стандартное отклонение и границ 95% доверительного интервала (95% ДИ). Статистический анализ был проведен с помощью программного обеспечения AnalystSoft Inc., StatPlus:mac (версия 8.0.4.0).

Результаты исследования и их обсуждение

Первый этап исследования включал ретроспективный анализ данных пациентов с ФП был выполнен в когорте пациентов амбулаторного (n=1822) и стационарного (n=1312) этапов оказания медицинской помощи на базе ФГБОУ ВО ПСПбГМУ им. И.П. Павлова Минздрава России. Для получения данных была использована электронная медицинская документация и архив историй болезней в период с 2014 по 2018 годы. При ретроспективном анализе изучено 24 215 обращений пациентов к кардиологам амбулаторного отделения поликлиники г. Санкт-Петербурга в период с 2014 по 2018 годы. С помощью программы электронного ведения медицинской документации отобрана когорта пациентов (n=1883) с указанием ФП в диагнозе. У 61/1883 (3.2%) пациентов с предварительным диагнозом ФП при обследовании данная аритмия не была зарегистрирована. В итоговый ретроспективный анализ были включены только данные больных с подтвержденной ФП (n=1822). Встречаемость ФП при обращении к кардиологам амбулаторно-поликлинического отделения в период с 2014 по 2018 годы составила 1822/24215 (7,5%). При анализе встречаемости $\Phi\Pi$ в практике кардиолога амбулаторного отделения поликлиники в течение 5-летнего периода был выявлен рост числа обращений к кардиологу пациентов с $\Phi\Pi$ по отношению к общему числу обратившихся, что представлено на рисунке 1.

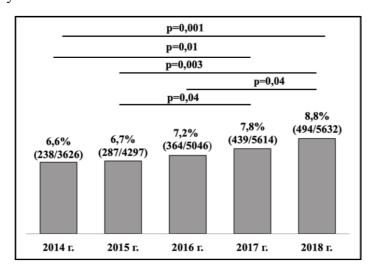


Рисунок 1 – Встречаемость фибрилляции предсердий у пациентов, обратившихся на амбулаторном этапе оказания медицинской помощи к кардиологу в период с 2014 по 2018 гг.

Доля пациентов с $\Phi\Pi$ на амбулаторном приеме у кардиолога в течение 5-летнего периода с 2014 по 2018 годы увеличилась в 1,3 раза (238/3626 (6,6%) в 2014 г. и 494/5632 (8,8%) в 2018 г.; р=0,001). Выявлены различия по частоте $\Phi\Pi$ среди мужчин и женщин изученной когорты пациентов. Среди амбулаторных пациентов с $\Phi\Pi$ преобладали женщины – 1072/1822 (58,8%), а аритмия у мужчин наблюдалась реже — у 750/1822 (41,2%); р=0,00001). Следовательно, частота $\Phi\Pi$ у женщин в амбулаторной практике кардиолога была выше в 2 раза, чем у мужчин (ОШ=2,04; 95% ДИ 1,79-2,33, р=0,00001). При анализе возраста пациентов с $\Phi\Pi$ было выявлено, что преобладали пациенты пожилого 782/1822 (42,9%) и старческого 684/1822 (37,5%) возраста. Число пациентов молодого и среднего возраста составило 47/1822 (2,6%) и 276/1822 (15,2%) соответственно, а долгожителей — 33/1822 (1,8%). Средний возраст пациентов с $\Phi\Pi$ на амбулаторном этапе оказания медицинской помощи — $69,8\pm11,7$ лет.

При анализе гендерных различий установлено, что встречаемость $\Phi\Pi$ у женщин 60 лет и старше выше, чем у мужчин (947/1499 (63,2%) и 552/1434 (38,5%); p=0,00001), а среди пациентов с $\Phi\Pi$ моложе 60 лет чаще встречались мужчины, чем женщины (198/323 (61,3%) и 125/323 (38,7%); p=0,00001). Установлено, что в когорте амбулаторных пациентов в возрасте до 60 лет мужчины имели в 2,5 раза более высокую вероятность $\Phi\Pi$, чем женщины (ОШ=2,51; 95% ДИ 1,83-3,44, p=0,00001). В то же время среди пациентов обследованной когорты в возрасте 60 лет и старше женщины имели более высокую вероятность $\Phi\Pi$, чем мужчины (ОШ=2,94; 95% ДИ 2,543,41, p=0,00001). Большинство амбулаторных пациентов имели неклапанную форму $\Phi\Pi$ 1783/1822 (97,9%), а $\Phi\Pi$ в сочетании с митральным стенозом или протезированием митрального клапана встречалась у 39/1822 (2,1%) пациентов.

В ретроспективный анализ данных пациентов с ФП были включены пациенты, госпитализированные в клинику терапии факультетской ФГБОУ ВО ПСПбГМУ им. И.П. Павлова Минздрава России. По данным ретроспективного анализа 10 663 историй болезней пациентов, госпитализированных в период с 2014 по 2018 годы в терапевтическое, кардиологическое и эндокринологическое отделения клиники, ФП встречалась у 1312/10663 $\Phi\Pi$ отношению к общему (12,3%) пациентов. Доли пациентов с ПО госпитализированных пациентов в каждый исследуемый год различались и составили: в 2014 году – 206/2132 (9,7%), в 2015 году – 280/2332 (12,0%), в 2016 году – 206/2132 (9,7%), в 2017 году - 283/2088 (13,6%), а в 2018 году - 213/1679 (12,7%). Следовательно, доля пациентов с ФП, госпитализированных в клинику в течение анализируемого 5-летнего периода с 2014 по 2018 годы увеличилась в 1,4 раза (206/2132 (9,7%) в 2014 г. и 283/2088 (13,6%) в 2018 г.; p=0.004). Средний возраст госпитализированных пациентов с $\Phi\Pi$ составил 69,7±10,5 лет. У госпитализированных больных с ФП патология митрального клапана (механический протез клапана, митральный стеноз средней или тяжелой степени) встречалась у 46/1312 (3,5%) больных, неклапанная форма ФП отмечена у большинства пациентов – 96,5%. При сравнении основных данных пациентов с ФП, получавших медицинскую помощь на амбулаторном и госпитальном этапах, установлено, что встречаемость $\Phi\Pi$ у госпитализированных в стационар пациентов выше, чем у пациентов, обращающихся за помощью на амбулаторном этапе (1312/10663 (12,3%)и 1822/24215 (7,5%), соответственно; p=0,0001).

Профилактика инсульта и системных тромбоэмболий является важнейшей задачей при лечении пациентов с $\Phi\Pi$. При ретроспективном анализе полученных данных пациентов амбулаторного этапа оказания медицинской помощи выявлено, что у 209/1822 (11,5%) пациентов были указания в анамнезе на ранее перенесенный ишемический инсульт и/или ТИА. Частота тромбоэмболий была выше у пациентов 60 лет и старше, чем у больных моложе 60 лет (12,4% и 7,1% соответственно; p=0,009). У пациентов с неклапанной формой $\Phi\Pi$ в когорте амбулаторных больных средний балл по шкале CHA_2DS_2VASc составил $3,7\pm1,8$. У 91/1783 (5,1%) пациентов с неклапанной формой $\Phi\Pi$ число баллов по шкале CHA_2DS_2VASc было равно 0, то есть риск инсульта у них был низким и антикоагулянтная терапия (AKT) не была показана. Число мужчин с 1 баллом по шкале CHA_2DS_2VASc и женщин с 2 баллами (включая женский пол) составило 198/1783 (11,1%). Число баллов по шкале CHA_2DS_2VASc 2 и более у мужчин и 3 и более у женщин было у 1494/1783 (83,8%) пациентов с неклапанной формой $\Phi\Pi$. При

анализе полученных данных установлено, что антикоагулянтная терапия (АКТ) проводилась в 1275/1822 (69,9%) случаев. Установлено, что более половины пациентов (109/205 (53,1%) с 1 баллом (мужчины) и 2 баллами (женщины) по шкале CHA2DS2VASc получали АКТ. При ретроспективной оценке данных пациентов амбулаторного этапа наблюдения и лечения было установлено, что среди пациентов с ФП, перенёсших в анамнезе инсульт или ТИА, у 28/209 (13,4%) больных не была назначена АКТ, среди них в 15/28 (53,6%) случаев был диагностирован ишемический инсульт, в 9/28 (32,1%) – ТИА, а у 4/28 (14,3%) пациентов верифицирован геморрагический инсульт. Риск кровотечений по шкале HAS-BLED составил 2,0±1,1 балла. Высокий риск кровотечений (3 и более баллов) имели 495/1822 (27,2%) пациентов. У пациентов с ФП и наличием показаний АКТ не была назначена 392/1525 (25,7%) пациентов, большинству из них (278/1525 (18,2%) была рекомендована антиагрегантная терапия, а 114/1525 (7,5%) больных не получали антитромботическую терапию. АКТ проводилась с применением ПОАК у 87,4% больных (1114/1275), а варфарина – у 12,6% пациентов (161/1275). В период с 2014 по 2018 год на амбулаторном этапе лечения ривароксабан использовался в 52,6% случаев (586/1114), апиксабан – у 34,1% пациентов (380/1114), а дабигатрана этексилат – у 13,3% больных с $\Phi\Pi$ (148/1114).

В инструкции для каждого ПОАК указаны 2 режима дозирования с указанием показаний для снижения дозы. Анализ частоты назначения ПОАК в полной и сниженной дозе, в том числе с учетом показаний для снижения, показал следующее. Ривароксабан в дозе 20 мг в сутки получали 370/586 (63,1%) пациентов, сниженную дозу 15 мг в сутки 180/586 (30,7%) пациентов. Следует отметить, что у 160/586 (27,3%) больных сниженная доза ривароксабана 15 мг в сутки была назначена необоснованно. Кроме того, 34/586 (5,8%) пациентов получали ривароксабан однократно в дозе 10 мг в сутки, и 2/586 (0,3%) пациентов – 2,5 мг 2 раза в сутки, несмотря на то, что данные дозы не зарегистрированы для профилактики инсульта и системной эмболии у пациентов с ФП. Следовательно, (196/586) 33,4% пациентов с ФП и высоким риском инсульта получали необоснованно сниженные дозы ривароксабана. Апиксабан в дозе 5 мг 2 раза в день принимали 198/380 (52,1%) пациентов, в сниженной дозе 2,5 мг 2 раза в сутки – 182/380 (47,9%). Наличие 2-х и более факторов с показанием к снижению дозы наблюдалось только у 18/380 (4,7%) и в 164/380 (43,2%) случаев сниженная доза апиксабана назначена необоснованно. Дабигатрана этексилат принимали 148 пациентов, из них в дозе 150 мг 2 раза в сутки -75/148 (50,7%), в дозе 110 мг 2 раза в сутки -49,3%(73/148). Показания к применению сниженной дозы препарата (возраст 80 и старше) выявлены у 17/148 (11,5%) пациентов. Факторы, при которых доза может быть снижена по усмотрению врача, имели 35/148 (23,7%) больных, из них 2 фактора – у 4/148 (2,7%), 1 фактор – у 31/148 (21,0%). У 14,2% пациентов (21/148) назначение сниженной дозы дабигатрана этексилата не имело оснований. Следовательно, назначение апиксабана больным с ФП в необоснованной дозе наблюдалось чаще, чем ривароксабана (164/380 (43,2%) и 196/586 (33,5%), p=0,0001) и чаще, чем дабигатрана (164/380 (43,2%) и 21/148 (14,2%), p=0,0001).

Анализ историй болезней пациентов с $\Phi\Pi$, госпитализированных в клинику, выявил, что из 1312 больных с $\Phi\Pi$ неклапанная форма аритмии выявлена у 1261/1312 (96,1%) пациентов. Риск инсульта и системных эмболий по шкале CHA_2DS_2VASc у пациентов составил 4,7±1,5 баллов. Терапия антикоагулянтами была показана 1127/1261 (89,4%) больных с неклапанной $\Phi\Pi$, так как они имели высокий риск инсульта. Умеренный риск ТЭО выявлен у 93/1261 (7,4%) больных с $\Phi\Pi$. Доля пациентов, имевших низкий риск инсульта (по шкале CHA_2DS_2VASc у мужчин 0 баллов, а у женщин 1 балл), составила только 32/1261 (2,5%). Риск кровотечений, оцениваемый по шкале HAS-BLED, у больных с неклапанной $\Phi\Pi$ составил 1,6±1,1 баллов.

При изучении данных пациентов на амбулаторном этапе оказания медицинской помощи за этот же период времени доля больных с умеренным риском ТЭО (по шкале CHA_2DS_2VASc мужчины имели 1 балл, а женщины – 2 балла) была выше, чем у пациентов, госпитализированных в клинику (198/1783 (11,1%) и 93/1261 (7,4%), p=0,0001). Установлено, что наиболее частым единственным фактором риска ТЭО у пациентов с ФП, госпитализированных в стационар, была $A\Gamma$ 81/93 (87,1%), реже сосудистые заболевания – 4/93

(4,3%) или СД – 2/93 (2,2%). Анализ дополнительных факторов риска тромбоэмболических осложнений у пациентов с ФП и 1 баллом по шкале CHA₂DS₂VASc у мужчин и 2 баллами у женщин, позволил установить, что наиболее распространенными факторами являются: дилатация левого предсердия -76/93 (81,7%), ожирение -38/93 (40,9%) и персистирующая или постоянная формы $\Phi\Pi - 35/93$ (37,6%). Сочетание нескольких дополнительных факторов риска встречалось у 57/93 (61,3%) пациентов. Несмотря на минимальное число баллов по шкале CHA₂DS₂VASc (1 балл у мужчин и 2 балла у женщин), 48/93 (51,6%) пациентов получали АКТ до госпитализации и 67/93 (72,0%) больным была рекомендована терапия антикоагулянтами при выписке из стационара. Из числа больных с умеренным и высоким риском ТЭО лишь 665/1229 (54.1%) пациентов с ФП получали АКТ на момент госпитализации в стационар. При ретроспективной оценке риска ТЭО установлено, что терапия антикоагулянтами была показана 1127/1261 (89,4%) больных с неклапанной ФП, так как они имели высокий риск инсульта (по шкале CHA₂DS₂VASc мужчины имели 2 и более баллов, а женщины – 3 и более баллов). При этом АКТ получали 599/1127 (53,2%) больных из тех пациентов, кому это лечение было несомненно показано из-за высокого риска инсульта и 52/102 (51,0%) пациентов из тех, у кого АКТ следовало рассмотреть. Риск кровотечений, оцениваемый по шкале HAS-BLED, в когорте больных с неклапанной $\Phi\Pi$ составил 1,6±1,1 балл.

До госпитализации в стационар варфарин получали 281/665 (42,3%) пациента. Международное нормализованное отношение (МНО) на момент госпитализации в целевом диапазоне (2,0–3,0) было у 111/281 (39,5%) пациентов. Чаще всего регистрировалось МНО менее целевых значений, то есть менее 2,0 – у 126/281 (44,8%), передозировка АВК со значением МНО более 3,0 наблюдалась у 39/281 (13,9%) больных, а у 5/281 (1,8%) МНО не определялось за время госпитализации. Большинство пациентов с ФП, госпитализированных в стационар, для профилактики ТЭО на амбулаторном этапе получали ПОАК – 384/665 (57,7%), при этом ривароксабан был назначен 180/384 (46,9%) пациентам, дабигатрана этексилат – 110/384 (28,6%) больным, а апиксабан – 94/384 (24,5%) пациентам. Среди пациентов, получавших ПОАК в сниженной дозе, у 68/118 (57,6%) больных доза была снижена необоснованно, чаще всего в необоснованно низкой дозе назначался апиксабан – 22/28 (78,6%). Доля больных, получавших необоснованно сниженные дозы ПОАК, от числа пациентов, получавших эти антикоагулянты, составила 68/384 (17,7%) в том числе 22/94 (23,4%) для апиксабана, 18/110 (16,4%) для дабигатрана и 28/180 (15,6%) для ривароксабана (р>0,05).

При изучении частоты различных форм $\Phi\Pi$ установлено, что на амбулаторном этапе лечения пациенты с пароксизмальной $\Phi\Pi$ 1185/1822 (65,1%) встречались чаще, чем с постоянной формой аритмии 465/1822 (25,5%), и чаще, чем с персистирующей $\Phi\Pi$ – у 152/1822 (8,3%) (p=0,0001 во всех группах сравнения). Доля пациентов с постоянной формой $\Phi\Pi$ была больше, чем с персистирующей формой аритмии (p=0,0001). Установлено, что бессимптомная $\Phi\Pi$ встречалась у 56/254 (22%) пациентов, ІІ класс по EHRA – у 132/254 (52%) больных, а ІІІ класс — у (66/254 (26%). На амбулаторном приеме IV класс EHRA не встречался. Антиаритмическая терапия (ААТ) у больных $\Phi\Pi$ в нашем исследовании применялась у 64,7% больных, причём наиболее часто использовались препараты ІІ класса. Радиочастотная аблация (РЧА) устьев легочных вен была проведена ранее у 93/1822 (5,1%) пациентов и рекомендована по результатам обращения к кардиологу 12/1822 (0,7%) больным.

Проанализировав ретроспективно клинико-анамнестические данные 431/1307 (33%) пациентов с ФП без органических заболеваний сердца, установлено, что у 208/431 (48,3%) больных встречалось ожирение, а у 51/431 (11,8%) больных с ожирением выполнялась ранее РЧА и рецидивы пароксизмов ФП у этих больных наблюдались чаще, чем у пациентов без ожирения (18/24 (75,0%) и 16/27 (59,3%), р=0,029). Риск рецидива ФП у пациентов с ожирением выше в 4,4 раза (ОШ=4,4, ДИ 95% 1,31-14,51, р=0,03). При анализе распространенности компонентов метаболического синдрома у пациентов с недостаточной эффективностью ААТ установлено, что АГ встречалась у 55,6% (n=65), нарушения углеводного обмена у 33,3% пациентов (n=39), из которых СД был установлен у 13,7% пациентов (n=16), ожирение у 41,0%

(n=48), снижение уровня XC ЛПВП у 27,4% пациентов (n=32), гипертриглицеридемия у 25,6% пациентов (n=30). У 55,6% (n=65) пациентов с отсутствием эффекта AAT встречались 3 и более компонентов метаболического синдрома. У пациентов, госпитализированных с ухудшением ФП (n=144), AAT была неэффективна у 121/144 (84%). Доля больных с пароксизмальной или персистирующей ФП и симптомным течением аритмии (EHRA II-IV), у которых следовало обсудить тактику контроля синусового ритма, составила 99/121 (81,8%). У 55/99 (55,6%) пациентов проведено изменение AAT, однако у 38/78 (38,6%) AAT не меняли. При отсутствии абсолютных противопоказаний к РЧА у пациентов, которым не меняли AAT, аритмологом были консультированы 12/38 (31,5%), а РЧА была рекомендована 8/38 (21,0%).

Анализ медицинской документации амбулаторных пациентов с ФП позволил установить. что среди заболеваний, которые могут быть причиной данной аритмии, наиболее частые – АГ, ожирение и ИБС. Следует отметить, что встречаемость АГ была значимо выше, чем ИБС у пациентов с $\Phi\Pi$ на амбулаторном этапе (1556/1822 (85,4%) и 751/1822 (41,2%), соответственно; р=0,0001). При обработке информации электронных первичных документов амбулаторных пациентов с ФП было выявлено, что окружность талии не оценивается кардиологами, что не позволило оценить истинную распространенность абдоминального ожирения у пациентов с ФП. В то же время при оценке ожирения по данным ИМТ (30 и более кг/м²) установлено, что встречаемость данного фактора риска ФП выше, чем ИБС у амбулаторных пациентов с ФП (934/1822 (51,3%) и 751/1822 (41,2%) соответственно; p=0,0001). Нарушения углеводного обмена выявлены у 412/1822 (22,6%) амбулаторных пациентов. При анализе причин $\Phi\Pi$ у пациентов, госпитализированных в стационар, установлено, что наиболее часто у этих больных встречались А Γ – у 1234/1312 (94,1%) и ИБС – у 715/1312 (54,5%). Среди часто встречающихся ассоциированных с ФП патологических состояний у 591/1312 (45,2%) пациентов выявлено ожирение (ИМТ >30 кг/м²), в том числе у 272/1312 (20,8%) больных без ИБС. Нарушения углеводного обмена встречались у 47,3% (621/1312) пациентов с ФП, в том числе СД – у 30,0% (400/1312). Снижение ХС ЛПВП встречалось у 31,4% (412/1312) больных, а гипертриглицеридемия – у 24,8% пациентов (325/1312). При анализе динамики встречаемости компонентов МС в период с 2014 по 2018 год установлено, что АГ является наиболее часто встречающимся компонентом МС у пациентов с ФП. Выявлено значимое увеличение доли пациентов с ожирением среди больных с ФП в 2018 году по сравнению с 2014 годом (96/206 (46,6%) и 77/213 (36,2%) соответственно, (p=0,03). Распространенность АГ, гипергликемии, снижения ХС ЛПВП и гипертриглицеридемии в динамике с 2014 по 2018 годы значимо не различались. Нами оценена динамика встречаемости числа компонентов МС у пациентов с ФП. Доля больных с 3 и более компонентами МС в 2018 году была больше, чем в 2014 году (66.1% и 43.2%, p=0.032), а вероятность ФП у больных с МС в течение 5 лет увеличилась в 2,6 раза (ОШ=2,6; 95% ДИ 1,16-5,69), p=0,032).

Второй этап исследования проводился по принципу одномоментного исследования по типу «случай-контроль» и включал сравнение антропометрических, лабораторных и инструментальных исследований пациентов с различным числом компонентов МС в сочетании и без $\Phi\Pi$. В группы контроля были включены пациенты с $\Phi\Pi$ без компонентов МС и практически здоровые обследованные без МС и без $\Phi\Pi$. Группы обследованных были сопоставимы по возрасту и в распределении по полу (таблица 1).

Таблица 1 — Клинические, антропометрические и лабораторные данные пациентов с метаболическим синдромом и с фибрилляцией предсердий

Параметры	MC (-) ΦΠ (-) n=182 (1)	MC (+) ΦΠ (-) n=233 (2)	MC (-) ΦΠ (+) n=112 (3)	MC (+) ΦΠ (+) n=208 (4)	Статистическая значимость, р
Возраст, лет	51,3±8,6	53,7±9,3	55,6±6,8	54,3±7,2	$p_{1,2,3,4}=0,305$
Пол, муж/жен	80/102	110/123	50/62	105/103	p _{1,2,3,4} =0,585
Длительность МС, лет	_	9,1±1,6		12,6±1,6	p _{2,4} =0,001
Длительность ФП, лет	_	_	4,6±1,2	4,4±2,2	p _{3,4} =0,265

Продолжение таблицы 1

	MC (-)	MC (+)	MC (-)	MC (+)	
Параметры	ФП (-)	ФП (-)	$\Phi\Pi$ (+)	$\Phi\Pi$ (+)	Статистическая
Параметры	n=182	n=233	n=112	n=208	значимость, р
	(1)	(2)	(3)	(4)	
					$p_{1,2}=0,0001, p_{1,3}=0,098$
ИМТ, кг/м ²	22,5±4,8	$34,1\pm8,6$	$24,9\pm3,5$	$32,3\pm6,6$	$p_{1,4}=0,0001, p_{2,3}=0,003$
					p _{2,4} =0,089, p _{3,4} =0,0001
					$p_{1,2}=0,0001, p_{1,3}=0,821$
Общий XC, ммоль/л	$4,9\pm0,9$	$5,4\pm1,1$	$4,8\pm1,2$	$5,2\pm1,2$	$p_{1,4}=0,0001, p_{2,3}=0,0001$
					p _{2,4} =0,689, p _{3,4} =0,0001
					$p_{1,2}=0,001, p_{1,3}=0,001$
ХС ЛПНП, ммоль/л	2,8±0,3	3,4±0,3	$3,1\pm0,3$	3,1±0,4	$p_{1,4}=0,001, p_{2,3}=0,134$
					p _{2,4} =0,289, p _{3,4} =0,989
					$p_{1,2}=0,001, p_{1,3}=0,145$
ХС ЛПВП, ммоль/л	$1,6\pm0,3$	$1,2\pm0,3$	$1,4\pm0,3$	$1,1\pm0,4$	$p_{1,4}=0,001, p_{2,3}=0,089$
					p _{2,4} =0,689, p _{3,4} =0,001
					$p_{1,2}=0,001, p_{1,3}=0,585$
ТГ, ммоль/л	$1,0\pm0,3$	$2,1\pm0,8$	$1,3\pm0,4$	$1,7\pm1,2$	$p_{1,4}=0,001, p_{2,3}=0,001$
					p _{2,4} =0,001, p _{3,4} =0,001
					$p_{1,2}=0,0001, p_{1,3}=0,087$
Глюкоза, ммоль/л	$4,7\pm0,6$	$6,1\pm1,2$	$5,1\pm0,4$	$6,0\pm1,4$	$p_{1,4}=0,0001, p_{2,3}=0,001$
					p _{2,4} =0,678, p _{3,4} =0,001

Сравнение эхокардиографических показателей у пациентов с метаболическим синдромом и фибрилляцией предсердий

Данные сравнения эхокардиографических параметров представлены в таблице 2. Размер ЛП, объемы и индексы объемов обоих предсердий у пациентов с $\Phi\Pi$ и MC больше, чем у пациентов с MC без $\Phi\Pi$ и больше, чем у обследованных без $\Phi\Pi$ и MC.

Таблица 2 — Эхокардиографические параметры у пациентов с метаболическим синдромом, фибрилляцией предсердий и у обследованных без фибрилляции предсердий и метаболического синдрома

Попомотрух	МС (-) ФП (-)	MC (+) ΦΠ (-)	` '	МС (+) ФП (+)	Статис	стическая значимость, р
Параметры	n=182 (1)	n=233 (2)	n=112 (3)	n=208 (4)	p _{1,2,3,4}	p _{1,2} , p _{1,3} , p _{1,4} p _{2,3} , p _{2,4} , p _{3,4}
Размер ЛП, Мм	34,8±4,1	43,3±4,8	42,5±4,6	47,3±5,2	0,00001	$p_{1,2}$ =0,0001, $p_{1,3}$ =0,0001 $p_{1,4}$ =0,0001, $p_{2,3}$ =0,201 $p_{2,4}$ =0,0001, $p_{3,4}$ =0,0001
Объем ЛП, Мл	44,3±13,1	71,7±12,2	74,3±8,5	90,1±10,3	0,00001	$p_{1,2}$ =0,0001, $p_{1,3}$ =0,0001 $p_{1,4}$ =0,0001, $p_{2,3}$ =0,191 $p_{2,4}$ =0,0001, $p_{3,4}$ =0,0001
Индекс объема ЛП, мл/м ²	24,9±6,9	34,1±9,1	29,5±7,9	44,6±4,1	0,00001	$p_{1,2}$ =0,0001, $p_{1,3}$ =0,0001 $p_{1,4}$ =0,0001, $p_{2,3}$ =0,01 $p_{2,4}$ =0,0001, $p_{3,4}$ =0,0001
Объем ПП, Мл	42,4±11,3	60,6±14,2	51,5±12,1	73,5±9,4	0,00001	p _{1,2} =0,001, p _{1,3} =0,0001 p _{1,4} =0,0001, p _{2,3} =0,01 p _{2,4} =0,0001, p _{3,4} =0,0001
Индекс объема ПП, мл/м ²	23,8±5,6	29,6±8,3	22,1±7,5	36,2±9,2	0,00001	$p_{1,2}=0,01, p_{1,3}=0,0001$ $p_{1,4}=0,0001, p_{2,3}=0,01$ $p_{2,4}=0,0001, p_{3,4}=0,0001$

Продолжение таблицы 2

Параметры		MC (-) MC (+) ΦΠ (-)		MC (-) MC (+) ΦΠ (+)	Статистическая значимость, р		
		n=182 (1)	n=233 (2)	n=112 (3)	n=208 (4)	p _{1,2,3,4}	$p_{1,2}, p_{1,3}, p_{1,4}$ $p_{2,3}, p_{2,4}, p_{3,4}$
ИММ ЛЖ,	муж.	82,5±4,3	109,9±7,8	93,5±4,3	117,4±10,1	0,0001	$p_{1,2}=0,001, p_{1,3}=0,001$ $p_{1,4}=0,001, p_{2,3}=0,001$ $p_{2,4}=0,001, p_{3,4}=0,001$
Γ/M ²	жен.	72,9±5,1	103,3±3,6	82,3±3,1	104,5±3,6	0,001	$p_{1,2}=0,001, p_{1,3}=0,001$ $p_{1,4}=0,001, p_{2,3}=0,001$ $p_{2,4}=0,381, p_{3,4}=0,001$
ФВ ЛЖ,	,%	64,3±6,9	64,6±6,6	62,7±6,9	62,7±8,6	0,071	_
Базальн размер I		33,9±9,4	36,8±11,4	34,7±6,2	37,6±11,4	0,001	$p_{1,2}=0,001, p_{1,3}=0,101$ $p_{1,4}=0,001, p_{2,3}=0,001$ $p_{2,4}=0,081, p_{3,4}=0,001$

При сравнении параметров ремоделирования обоих желудочков установлено, что ИММ ЛЖ и размер ПЖ у пациентов с ФП и МС и больных с МС без ФП больше, чем у обследованных без ФП и МС. Показатель ИММ ЛЖ только у мужчин с ФП и МС был больше, чем у больных с МС без ФП, а у женщин значимо не различался при сравнении в группах пациентов с МС. При анализе распространенности гипертрофии левого желудочка (ГЛЖ) у пациентов с МС было установлено, что ГЛЖ у больных с ФП и МС встречалась чаще, чем у пациентов с МС без ФП (94/181 (51,1%) и 88/221 (39,8%), p=0,016), а наличие ГЛЖ увеличивало вероятность ФП в когорте пациентов с МС в 1,6 раза (ОШ=1,63; 95% ДИ 1,09-2,43, p=0,016).

Толщина эпикардиальной жировой ткани у пациентов с $\Phi\Pi$ и MC больше, чем у пациентов с MC без $\Phi\Pi$ и больше, чем у обследованных без MC и без $\Phi\Pi$. ТЭЖ у пациентов с $\Phi\Pi$ без MC была больше, чем у обследованных без $\Phi\Pi$ и без MC, что представлено на рисунке 2. Проведен анализ связи ТЭЖ с антропометрическими параметрами. Выявлена сильная положительная корреляция ТЭЖ с ОТ (r=0,542, p=0,00001), ИМТ (r=0,495, p=0,00001) и весом обследованных (r=0,469, p=0,00001). По результатам многофакторного регрессионного анализа с пошаговым исключением наименее значимых предикторов установлено, что ТЭЖ имеет более значимую связь с ОТ (Beta – 0,413, p=0,00001) и ИМТ (Beta – 0,161, p=0,02).

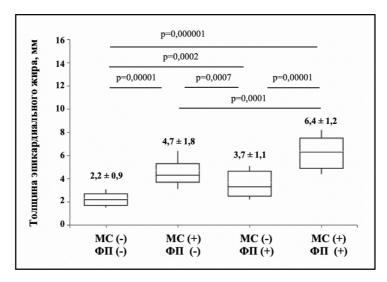


Рисунок 2 — Результаты сравнения толщины эпикардиального жира у пациентов с фибрилляцией предсердий, метаболическим синдромом и обследованных в группах контроля

При проведении корреляционного анализа установлено, что показатель ТЭЖ имеет статистически значимую связь со всеми основными изучаемыми параметрами ремоделирования камер и наиболее сильная корреляция была выявлена между ТЭЖ и размером (r=0,549, p=0,00001), а также объемом левого предсердия (r=0,529, p=0,00001). По результатам регрессионного анализа была подтверждена положительная связь ТЭЖ с размером ЛП (Beta – 2,57, R^2 – 0,873, p=0,00001), объемом ЛП (Beta – 1,13, R^2 – 0,866, p=0,00001) и объемом ПП (Beta – 1,18, R^2 – 0,853, p=0,00001).

При сравнении распространенности диастолической дисфункции ЛЖ у обследованных пациентов с МС (n=383) установлено, что встречаемость нарушения диастолической функции ЛЖ у пациентов с $\Phi\Pi$ и MC выше, чем у больных с MC без $\Phi\Pi$ (76/162 (46.9%) и 81/221 (36.7%). р=0,041). Наличие диастолической дисфункции ЛЖ у пациентов с МС увеличивало вероятность ФП в 1,5 раза (ОШ=1,53; 95% ДИ 1,01-2,31, p=0,041). Проведенный корреляционный анализ связи ТЭЖ с параметрами, характеризующими диастолическую функцию ЛЖ, позволил выявить отрицательную связь ТЭЖ с соотношением Е/А (r= -0,429, p=0,00001) и параметром e' (r= -0,496, p=0,00001). Установлена положительная связь ТЭЖ с давлением наполнения ЛЖ (r=0,385, p=0,00001). По результатам регрессионного анализа подтверждены выявленные связи ТЭЖ с E/A (Beta - 1,11, $R^2 - 0,684$, p=0,00001), e' (Beta - 1,28, $R^2 - 0,698$, p=0,00001) и E/e' (Beta – 1,49, R^2 – 0,833, p=0,00001). По результату многофакторного регрессионного анализа с включением всех компонентов МС и пошаговым исключением менее значимых предикторов установлено, что на объем ЛП в большей степени влияет АГ (Beta – 0,411, p=0,00001) и в меньшей степени AO (Beta -0,102, p=0,019), а влияние других компонентов МС не значимо. Подобный анализ также позволил установить, что из числа компонентов МС большее влияние на объем ПП оказывало AO (Beta - 0.298, p=0.00001), а в меньшей степени $A\Gamma$ (Beta – 0,159, p=0,0002), другие факторы не оказывали значимого влияния.

Сосудистое ремоделирование у пациентов с метаболическим синдромом и фибрилляцией предсердий

В исследование параметров сосудистого ремоделирования было включено 760 пациентов, так как определение этих показателей с помощью использованного оборудования возможно только при наличии регулярного сердечного ритма. Установлено, что показатели R-CAVI, L-CAVI и R-kCAVI у пациентов с ФП в сочетании с МС выше, чем у пациентов с МС без ФП, и выше, чем у здоровых обследованных. Суррогатный показатель оценки сосудистой жесткости — кфСРПВ у пациентов с ФП и МС был выше, чем у пациентов с МС без ФП и выше, чем у здоровых обследованных, что представлено в таблице 3.

Таблица 3 – Результаты сравнения показателей CAVI, R-kCAVI, ABI и кфСРПВ у пациентов с фибрилляцией предсердий в сочетании и без метаболического синдрома, и у здоровых обследованных

Попоможни	MC (-) ФП (-) n=253	MC (+) ФП (-) n=233	MC (+) ΦΠ (+) n=175	(Статистическая
Параметры	(1)	(2)	(3)	p _{1,2,3}	значимость, р p _{1,2} , p _{1,3} , p _{2,3}
R-CAVI	5,0±1,2	7,7±1,1	8,2±1,3	0,0003	$p_{1,2}=0,001, p_{1,3}=0,001, p_{2,3}=0,01$
L-CAVI	5,1±1,2	7,6±1,1	8,3±1,2	0,004	$p_{1,2}=0,001, p_{1,3}=0,001, p_{2,3}=0,001$
R-kCAVI	6,4±1,3	8,1±1,2	8,6±1,4	0,0002	$p_{1,2}=0,001, p_{1,3}=0,001, p_{2,3}=0,201$
R-ABI	1,1±0,1	1,1±0,1	1,1±0,1	0,368	_
L-ABI	1,1±0,1	1,1±0,1	1,1±0,1	0,249	_
кфСРПВ	6,4±1,3	7,4±1,4	9,6±2,1	0,0001	$p_{1,2}=0.01, p_{1,3}=0.0001, p_{2,3}=0.001$

При сравнении показателей сосудистого ремоделирования (CAVI, R-kCAVI и ABI) не было установлено статистически значимых различий у пациентов с ФП в сочетании с МС и без МС. Выявлено, что кфСРПВ у пациентов с ФП и МС была больше, чем у пациентов с ФП без MC $(9,6\pm2,1\ и\ 7,5\pm0,6,\ p=0,0001)$. Корреляционный анализ связи параметров, характеризующих ремоделирование сосудистой стенки, и количественных параметров оценки компонентов МС позволил выявить, что кфСРПВ положительно коррелировала с ОТ (r=0,472, p=0,00001), систолическое АД (r=0,411, p=0,00001) и уровнем ТГ в крови (r=0,345, p=0,00001), а также слабая отрицательная корреляция кфСРПВ с уровнем XC ЛПВП в плазме крови (r=-0,336, p=0,00001). Показатели R-CAVI, R-kCAVI, R-ABI статистически значимо не коррелировали с параметрами МС в обследованной когорте. Выявлена положительная связь кфСРПВ с числом компонентов МС (r=0,436, p=0,00001), а по данным регрессионного анализа была подтверждена связь кфСРПВ с увеличением числа компонентов МС (Beta - 2.01, $R^2 -$ 0,736, p=0,00001). По результатам многофакторного регрессионного анализа с пошаговым исключением менее значимых предикторов установлено, что только АГ (Beta - 0,363, p=0,00001), гипергликемия натощак (Beta -0,101, p=0,039) и гипертриглицеридемия (Beta -0,09, p=0,041) значимо влияли на увеличение кфСРПВ. По результатам однофакторного регрессионного анализа установлено, что из всех изучаемых показателей оценки сосудистого ремоделирования только кфСРПВ статистически значимо влияла на объем ЛП (*Beta* – 0,367, p=0,00001) и ИММ ЛЖ (Beta - 0,299, p=0,00001), что представлено на рисунке 3. По данным биномиального регрессионного анализа выявлено, что из числа изученных параметров ремоделирования сосудов лишь кфСРПВ имела значимое влияние на вероятность диастолической дисфункции ЛЖ у пациентов с МС (ОШ=1,34; 95% ДИ 1,18-1,51, p=0,000002). прогностической роли параметров сосудистой жесткости однофакторный анализ, в ходе которого установлено, что увеличение R-CAVI (ОШ=1,56; 95% ДИ 1,26-1,96, p=0,0001), R-kCAVI (ОШ=1,49; 95% ДИ 1,19-1,85, p=0,0002) и кфСРПВ $(OIII=2,44; 95\% \ ДИ 2,01-2,95, p=0,00001)$ повышало вероятность $\Phi\Pi$ у пациентов с МС. При многофакторном анализе со ступенчатым исключением менее значимых предикторов установлено, что из изученных маркеров сосудистого ремоделирования лишь кфСРПВ значимо влияла на вероятность ФП у пациентов с МС и увеличивала в 1,7 раза риск данной аритмии в обследованной когорте пациентов (ОШ=1,74; 95% ДИ 1,36-2,24, p=0,00001).

Результаты респираторного мониторирования во время сна пациентов с метаболическим синдромом и фибрилляцией предсердий

Всем пациентам с МС проводилось анкетирование с использованием опросника STOP BANG для выявления больных с риском нарушений дыхания во сне. Кардиореспираторное мониторирование (КРМ) выполнено 286 обследованных: 78 пациентам с ФП и СОАС, 79 пациентам с ФП без СОАС, 73 пациентам с СОАС без ФП и 56 больным без ФП и без СОАС (группа сравнения). Установлено, что диаметр ЛП, объем и индекс объема левого и правого предсердий у пациентов с ФП и СОАС больше, чем у больных с ФП без СОАС и значительно больше, чем у пациентов без ФП и без СОАС (таблица 4). По данным КРМ у пациентов с СОАС и ФП и без данной аритмии индекс апноэ/гипопноэ (ИАГ), средний уровень сатурации крови значимо не различались (p>0,05).

При проведении биномиального регрессионного анализа влияния степени тяжести СОАС на вероятность $\Phi\Pi$ у пациентов с MC установлено, что СОАС тяжелой степени увеличивал в 1,3 раза вероятность $\Phi\Pi$ у пациентов с MC (ОШ=1,29; 95% ДИ 1,09-1,55, p=0,003). Показатель отношения времени SpO₂ менее 89% от общей продолжительности сна у пациентов с $\Phi\Pi$ и COAC больше, чем у больных с COAC без $\Phi\Pi$ (23,7±0,4 и 19,6±0,4, p=0,031). Встречаемость хронической ночной гипоксемии у пациентов с $\Phi\Pi$ и COAC выше, чем у больных с COAC без $\Phi\Pi$ (39/78 (50%) и 11/73 (15,1%), p=0,00001). Наличие хронической ночной гипоксемии у пациентов с COAC в когорте больных с MC увеличивало вероятность $\Phi\Pi$ в 5,6 раз (ОШ=5,64; 95% ДИ 2,58-12,29, p=0,00001).

Таблица 4 — Клинические, антропометрические, лабораторные данные и результаты кардиореспираторного мониторирования больных с фибрилляцией предсердий в сочетании и без нарушений дыхания во сне

	ФΠ	[(-)	ФΠ	(+)	C=====================================
Параметры	COAC (-)	COAC (+)	COAC (-)	COAC (+)	Статистическая
	n=56(1)	n=73 (2)	n=79(3)	n=78 (4)	значимость, р
Возраст, лет	51,3±8,6	51,4±9,3	53,6±6,8	54,3±7,2	p _{1,2,3,4} =0,165
Пол, муж/жен	26/30	34/39	38/41	35/43	p _{1,2,3,4} =0,277
ИМТ, кг/ м ²	32,3±4,8	34,1±8,6	32,7±3,5	35,3±6,6	p _{1,2,3,4} =0,605
Диаметр ЛП, мм	37,7±2,7	43,6±4,2	43,1±2,0	47,1±4,0	$\begin{array}{c} p_{1,2} = 0,01, \ p_{1,3} = 0,001, \\ p_{1,4} = 0,001, \ p_{2,3} = 0,634, \\ p_{2,4} = 0,01, \ p_{3,4} = 0,01 \end{array}$
Объем ЛП, мл	55,2±9,4	81,9±16,6	76,3±19,8	94,1±19,4	$p_{1,2}$ =0,001, $p_{1,3}$ =0,001, $p_{1,4}$ =0,001, $p_{2,3}$ =0,004, $p_{2,4}$ =0,001, $p_{3,4}$ =0,001
Индекс объема ЛП, мл/м 2	28,4±4,9	35,9±9,7	39,6±9,0	44,9±11,2	$p_{1,2}=0,001, p_{1,3}=0,001, p_{1,4}=0,001, p_{2,3}=0,001, p_{2,4}=0,001, p_{3,4}=0,001$
Объем ПП, мл	47,3±8,9	63,8±14,4	63,1±20,6	73,6±14,7	$\begin{array}{c} p_{1,2}\!\!=\!\!0,\!001,p_{1,3}\!\!=\!\!0,\!001,\\ p_{1,4}\!\!=\!\!0,\!001,p_{2,3}\!\!=\!\!0,\!867,\\ p_{2,4}\!\!=\!\!0,\!001,p_{3,4}\!\!=\!\!0,\!001 \end{array}$
Индекс объема ПП, мл/м 2	25,1±4,3	30,1±7,3	32,5±8,8	35,7±7,8	$\begin{array}{c} p_{1,2}\!\!=\!\!0,\!001,p_{1,3}\!\!=\!\!0,\!001,\\ p_{1,4}\!\!=\!\!0,\!00,p_{2,3}\!\!=\!\!0,\!167,\\ p_{2,4}\!\!=\!\!0,\!001,p_{3,4}\!\!=\!\!0,\!001 \end{array}$

Биомаркеры фиброза и воспаления у пациентов с фибрилляцией предсердий и метаболическим синдромом

При определении концентраций провоспалительных маркеров установлено, что уровни ФНО-альфа, СРБ, ИЛ-6, КТ-1 у больных с ФП в сочетании с МС выше, чем у пациентов с ФП без МС и выше, чем у обследованных без ФП и без МС. Концентрации СРБ, ИЛ-6 и КТ-1 у пациентов с ФП и МС были выше, чем у больных с МС без данной аритмии, однако уровень ФНО-альфа в крови статистически значимо не различался, что представлено на рисунке 3.

При линейном регрессионном анализе подтверждены связи изучаемых биомаркеров с толщиной эпикардиальной жировой ткани (ТЭЖ): СРБ (Beta = 0.535, $R^2 = 0.672$, p=0.00001), ФНО-альфа (Beta - 0.611, $R^2 - 0.698$, p=0.00001) и ИЛ-6 (Beta - 0.594, $R^2 - 0.750$, p=0.00001). При проведении многофакторного регрессионного анализа влияния параметров, характеризующих ожирение (ИМТ, ОТ, ТЭЖ), с пошаговым исключением наименее значимых предикторов, установлено, что уровень СРБ в большей степени был ассоциирован с ТЭЖ (Beta - 0.343, p=0.00001) и ИМТ (Beta - 0.47, p=0.00001), а концентрация КТ-1 более значимо была ассоциирована с увеличением ИМТ (Beta - 0.281, p=0.0002) и ТЭЖ (Beta - 0.297, р=0,00005). Повышение концентрации ИЛ-6 в крови значимо связано с увеличением ТЭЖ (Beta-0.444, p=0.00001) и ОТ (Beta-0.137, p=0.001). Повышение концентрации ФНО-альфа было ассоциировано только с увеличением ТЭЖ (Beta - 0.314, p=0.00001).

По данным многофакторного регрессионного анализа с пошаговым исключением менее значимых предикторов из числа биомаркеров воспаления установлено, что увеличение объема ЛП в наибольшей степени зависело от концентрации ИЛ-6 (Beta-0,181, p=0,00006) и СРБ (Beta-0,159, p=0,0004). В свою очередь, увеличение объема ПП в большей степени ассоциировано с увеличением СРБ (Beta-0,249, p=0,001). Концентрация СРБ в крови у обследованных имела значимую корреляцию только с кфСРПВ (r=0,416, p=0,00001), которая была подтверждена и по данным регрессионного анализа (Beta-0,283, $R^2-0,619$, p=0,00001). Взаимосвязи ФНО-альфа, ИЛ-6 и КТ-1 с показателями ремоделирования сосудов не выявлено.

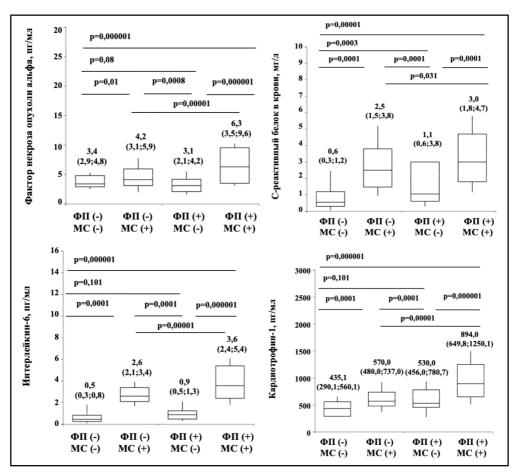


Рисунок 3 – Концентрации биомаркеров воспаления у обследованных

Концентрации в крови маркеров фиброза GDF-15, TGF-beta1, альдостерона, CTGF, галектина-3 у больных с ФП в сочетании с МС выше, чем у пациентов с ФП без МС и выше, чем у обследованных без ФП и без МС. Концентрации данных биомаркеров фиброза у пациентов с ФП и МС выше, чем у больных с МС без данной аритмии. Концентрации N-концевых предшественников проколлагенов I и III типов (PINP и PIIINP) у пациентов с ФП и МС выше, чем у пациентов с ФП без МС, и выше, чем у пациентов с МС без ФП (таблица 5).

Концентрация в крови галектина-3 положительно коррелировала с уровнем PINP (Rho=0,465, p=0,0001) и PIIINP (Rho=0,409, p=0,0001). Концентрация GDF-15 в большей степени коррелировала с PIIINP (Rho=0,403, p=0,0001), чем с PINP (Rho=0,232, p=0,03). TGF-beta1 сильнее коррелировал с PIIINP (Rho=0,329, p=0,0001), а CTGF – с PINP (Rho=0,386, p=0,0001).

Таблица 5 – Концентрации в крови биомаркеров фиброза у обследованных

Гуулуаруулуу	MC (-)	MC (+) MC (-) ΦΠ (-) ΦΠ (+)		MC (+)	Статистическая значимость, р		
Биомаркеры	ΦΠ (-) n=182 (1)	n=233 (2)	n=35 (3)	ΦΠ (+) n=208 (4)	p ^{KW}	p _{1,2} , p _{1,3} , p _{2,3}	
Альдостерон, пг/мл	78,0 (56,0- 98,8)	123,0 (99,1- 167,6)	90,2 (67,3- 107,5)	138,9 (100,9- 173,5)	0,0001	$p_{1,2}=0,00001, p_{1,3}=0,625$ $p_{1,4}=0,000001, p_{2,3}=0,01$ $p_{2,4}=0,01, p_{3,4}=0,000001$	
TGF-beta1, пг/мл	1908,0 (1459,0- 3145,1)	2156,0 (2033,5- 3133,5)	2020,8 (1576,9- 3445,5)	3871,0 (2697,9- 5570,0)	0,0001	$\begin{array}{c} p_{1,2} = 0,00007, \ p_{1,3} = 0,00001 \\ p_{1,4} = 0,000001, \ p_{2,3} = 0,124 \\ p_{2,4} = 0,00001, \ p_{3,4} = 0,000001 \end{array}$	
Галектин-3, нг/мл	2,1 (1,4-3,1)	5,3 (4,5-8,1)	4,9 (4,3-7,0)	13,3 (7,8-16,8)	0,0001	$p_{1,2}=0,00001, p_{1,3}=0,00001$ $p_{1,4}=0,000001, p_{2,3}=0,08$ $p_{2,4}=0,0001, p_{3,4}=0,000001$	

Продолжение таблицы 5

F	MC (-)	MC (+)	MC (-)	MC (+)	Статистическая значимость, р		
Биомаркеры	ΦΠ (-) n=182 (1)	ΦΠ (-) n=233 (2)	$\Phi\Pi$ (+) n=35 (3)	ΦΠ (+) n=208 (4)	p^{KW}	p _{1,2} , p _{1,3} , p _{2,3}	
GDF-15, пг/мл	439,0 (412,6- 468,1)	656,0 (540,2 - 890,0)	548,8 (457,4- 851,1)	1320,0 (917,0- 2092,8)	0,0001	$p_{1,2}=0,0001, p_{1,3}=0,006$ $p_{1,4}=0,00001, p_{2,3}=0,01$ $p_{2,4}=0,002, p_{3,4}=0,0001$	
CTGF, пг/мл	70,9 (41,6- 98,9)	139,6 (114,2- 157,0)	111,8 (60,1- 166,3)	156,0 (109,1- 192,1)	0,0001	$p_{1,2}=0,0001, p_{1,3}=0,006$ $p_{1,4}=0,00001, p_{2,3}=0,01$ $p_{2,4}=0,002, p_{3,4}=0,0001$	
PINP, пг/мл	878,8 (775,1- 966,6)	2130,3 (1392,0- 2820,1)	2996,1 (2283,8- 3894,3)	3421,4 (1808,1- 4321,7)	0,0001	$p_{1,2}$ =0,008, $p_{1,3}$ =0,0001 $p_{1,4}$ =0,0001, $p_{2,3}$ =0,067 $p_{2,4}$ =0,0001, $p_{3,4}$ =0,01	
PIIINP, нг/мл	33,3 (23,5- 42,6)	55,1 (37,7- 86,9)	38,9 (40,7- 86,1)	88,5 (58,6-120,4)	0,0001	$p_{1,2}=0,001, p_{1,3}=0,104$ $p_{1,4}=0,0001, p_{2,3}=0,01$ $p_{2,4}=0,0001, p_{3,4}=0,001$	
Примечание –	р ^{КW} – статис	стическая зн	ачимость по	критерию К	рускала-У	уоллиса.	

По данным многофакторного регрессионного анализа из всех изучаемых биомаркеров GDF-15 в большей степени влиял на концентрацию PIIINP (Beta=0,234, p=0,038), а галектин-3 на PINP (Beta=0,248, p=0,021). По данным многофакторного регрессионного анализа методом пошагового исключения установлено, что на концентрацию в крови CTGF из числа изучаемых биомаркеров в большей степени влияют TGF-beta1 (Beta=0,346, p=0,0001) и ИЛ-6 (Beta=0,279, p=0,0001), а на уровень галектина-3: КТ-1 (Beta=0,293, p=0,0001), альдостерон (Beta=0,198, p=0,0001) и ИЛ-6 (Beta=0,189, p=0,0001). Корреляционный анализ выявил более сильную связь альдостерона (Rho=0,603, p=0,0001) и TGF-beta1 (Rho=0,544, p=0,001) с систолическим АД, а CTGF (Rho=0.511, p=0.0001) и ИЛ-6 (Rho=0.498, p=0.0001) в большей степени коррелировали с ОТ. Выявлена положительная корреляция концентрации глюкозы в крови натощак с галектином-3 (Rho=0,448, p=0,0001) и GDF-15 (Rho=0,414, p=0,0001). биномиального регрессионного анализа только увеличение концентрации в крови GDF-15 ассоциировано с вероятностью гипергликемии натощак (Beta=0,544, p=0,0001). Определение концентраций биомаркеров фиброза в крови позволило установить, что концентрации GDF-15, галектина-3, PINP и PIIINP выше у пациентов с ФП в сочетании с COAC, чем у больных с СОАС без аритмии и значительно выше, чем у пациентов с ФП без СОАС (таблица 6).

При сравнении результатов анализа концентраций провоспалительных цитокинов в крови у пациентов с СОАС установлено, что уровень КТ-1 у пациентов с ФП и СОАС выше, чем у пациентов с ФП без СОАС (1233,3 (925,3;1855,1) и 681,4 (480,1;960,1) пг/мл, p=0,001), и выше, чем у больных с СОАС без ФП (1233,3 (925,3;1855,1) и 549,1 (411,9;960,7) пг/мл, p=0,001). Уровень в крови ИЛ-6 у пациентов с ФП и СОАС выше, чем у больных с ФП без СОАС (3,6 (1,2;5,6) и 1,3 (0,8;2,8) пг/мл, p=0,001), однако значимо не отличался от уровня данного провоспалительного биомаркера у больных с СОАС без ФП (3,6 (1,2;5,6) и 3,3 (1,4;4,9) пг/мл, p=0,131). Уровень СРБ в крови у пациентов с ФП и СОАС выше, чем у больных с ФП без СОАС (3,8 (2,1;6,8) и 2,2 (0,9;3,9) пг/мл, p=0,001). Уровень ФНО-альфа в крови не различался у обследованных (p=0,405). У пациентов с СОАС выявлены положительные корреляции между галектином-3 и КТ-1 (Rho=0,410, p=0,00002), галектином-3 и GDF-15 (Rho=0,430, p=0,0003), галектином-3 и PIIINP (Rho=0,451, p=0,0001). Корреляционный анализ выявил, что более сильная положительная связь наблюдется между уровнем индекса апноэ/гипопноэ и концентрациями в крови GDF-15 (Rho=0,661, p=0,00001), галектина-3 (Rho=0,519, p=0,00001), ИЛ-6 (Rho=0,310, p=0,0001) и СРБ (Rho=0,361, p=0,0002).

Таблица 6 — Концентрации биомаркеров фиброза в крови пациентов с фибрилляцией предсердий и синдромом обструктивного апноэ во время сна

	ΦΙ	T (-)	ΦΙ	T (+)	Статистическая значимость, р	
Биомаркеры	COAC (-) n=56 (1)	COAC (+) n=73 (2)	COAC (-) n=79 (3)	COAC (+) n=78 (4)	p^{KW}	p _{1,2} , p _{1,3} , p _{1,4} p _{2,3} , p _{2,4} , p _{3,4}
GDF-15, пг/мл	475,5 (425,2- 622,3)	856,3 (622,5- 1956,4)	689,0 (557,7- 929,5)	1648,3 (775,3- 2568,1)	0,001	p _{1,2} =0,001, p _{1,3} =0,04, p _{1,4} =0,001, p _{2,3} =0,01, p _{2,4} =0,001, p _{3,4} =0,001
CTGF, пг/мл	108,1 (65,7- 134,7)	153,6 (111,1- 178,2)	146,4 (89,1- 180,1)	166,1 (98,6-218,3)	0,001	$p_{1,2}=0,001, p_{1,3}=0,001, \\ p_{1,4}=0,001, p_{2,3}=0,001, \\ p_{2,4}=0,198, p_{3,4}=0,001$
TGF-beta1, пг/мл	1973,5 (1460,3- 4500,4)	2048,7 (1431,3- 2721,5)	2389,5 (1894,7- 3949,4)	2882,5 (2431,5- 4263,5)	0,465	-
Альдостерон, пг/мл	91,2 (58,3- 128,1)	105,1 (68,0-132,1)	91,9 (71,1- 125,1)	110,5 (82,6-166,5)	0,0001	p _{1,2} =0,373, p _{1,3} =0,127, p _{1,4} =0,02, p _{2,3} =0,201, p _{2,4} =0,265, p _{3,4} =0,01
PINP, пг/мл	1737,6 (834,1- 2582,9)	2355,3 (1925,0- 3382,1)	2965,1 (1889,8- 3675,3)	3459,4 (2167,1- 4112,1)	0,001	$p_{1,2}=0,001, p_{1,3}=0,001, p_{1,4}=0,001, p_{2,3}=0,281, p_{2,4}=0,001, p_{3,4}=0,001$
PIIINP, нг/мл	38,1 (25,4-50,2)	50,6 (38,9- 68,3)	60,8 (47,7- 90,1)	95,6 (78,6-120,4)	0,001	$p_{1,2}=0,001, p_{1,3}=0,001, \\ p_{1,4}=0,001, p_{2,3}=0,201, \\ p_{2,4}=0,001, p_{3,4}=0,001$
Галектин-3, нг/мл	4,2 (2,8-5,3)	8,4 (5,1-11,6)	6,8 (5,3-8,2)	13,4 (8,5-17,6)	0,001	$\begin{array}{c} p_{1,2}\!\!=\!\!0,\!001,p_{1,3}\!\!=\!\!0,\!001,\\ p_{1,4}\!\!=\!\!0,\!001,p_{2,3}\!\!=\!\!0,\!05,\\ p_{2,4}\!\!=\!\!0,\!001,p_{3,4}\!\!=\!\!0,\!001 \end{array}$
Примечание – р	^{KW} – статист	ическая значи	имость по кр	итерию Крусі	кала-Уол.	писа.

Выявлены отрицательные корреляции среднего уровня SpO2 с CPБ (Rho=-0,354, p=0,001), галектином-3 (Rho=-0,451, p=0,00001), GDF-15 (Rho=-0,637, p=0,00001), а минимальный уровень SpO2 имел отрицательную связь с концентрацией GDF-15 (Rho=0,664, p=0,00001). Многофакторный регрессионный анализ с пошаговым исключением менее значимых предикторов, из числа изучаемых биомаркеров позволил установить, что увеличение времени сна с SpO2 менее 89% по отношению к общему времени сна в большей степени влияло на концентрацию в крови GDF-15 (Beta=0,603, R^2 – 0,564, p=0,0003). По данным многофакторного регрессионного анализа установлено, что наиболее значимыми были связь ИАГ с концентрацией в крови GDF-15 (Beta – 0,909, R^2 – 0,764, p=0,00001) и галектином-3 (Beta – 0,706, R^2 – 0,681, p=0,00001).

Для определения роли изучаемых биомаркеров в развитии фиброза миокарда ЛП пациентам с ФП в сочетании и без МС (n=79), которым проводилось электроанатомическое картирование с использованием системы САRTO 3 перед РЧА устьев легочных вен при помощи системы картирования получены биполярные карты ЛП. Степень выраженности фиброза миокарда ЛП (площадь миокарда с вольтажом 0,2-0,7 мВ в соотношении с общей площадью ЛП) у пациентов с ФП в сочетании с МС больше, чем при ФП без МС (33,0 (22,2;43,6) и 13,4 (9,9;17,1)%, p=0,00001). Установлена сильная положительная корреляция степени выраженности фиброза миокарда ЛП у пациентов с ФП и ИМТ (Rho=0,516, p=0,00001), ОТ (Rho=0,553, p=0,00001) и ТЭЖ (Rho=0,659, p=0,00001). По данным многофакторного регрессионного анализа, наиболее значимо на выраженность фиброза влияла ТЭЖ (Beta=0,483, p=0,00001). Пациенты, которым выполнено картирование ЛП, в соответствии с площадью зон фиброза ЛП были разделены на четыре квартиля: $Q1 \le 12,3\%$; Q2 12,4-22,4%; Q3 22,5-33,4%; $Q4 \ge 33,5\%$ от площади ЛП. При сравнении ТЭЖ у пациентов с ФП в каждом квартиле степени выраженности фиброза миокарда ЛП установлено, что у

пациентов группы Q1 ТЭЖ была меньше, чем у пациентов группы Q2 (4,6 \pm 1,8 и 5,3 \pm 1,8 мм, p=0,001), меньше, чем в Q3 (4,6 \pm 1,8 и 6,5 \pm 1,3 мм, p=0,001), и значимо ниже, чем у пациентов в группе Q4, у которых фиброз ЛП был более 30% от общей площади (4,6 \pm 1,8 и 7,5 \pm 1,8 мм, p=0,0001). При проведении сравнения концентраций биомаркеров фиброза в крови пациентов с ФП в квартилях степени выраженности фиброза установлено, что у больных с наибольшей выраженностью фиброза ЛП в группе Q4 (\geq 33,5%) выявлены более высокие концентрации галектина-3, альдостерона, GDF-15, PINP и PIIINP (таблица 7).

Таблица 7 — Концентрации биомаркеров фиброза в крови у пациентов с фибрилляцией предсердий и метаболическим синдромом с различной степенью выраженности фиброза миокарда левого предсердия

Гуулуулган	0	⁄⁄ фиброза ЛГ	Стати	Статистическая значимость, р		
Биомаркеры	≤12,3%	12,4-22,4%	22,5-33,4%	≥33,5%	p ^{KW}	$p_{1,2}, p_{1,3}, p_{1,4}$
	(Q1)	(Q2)	(Q3)	(Q4)	þ	p _{2,3} , p _{2,4} , p _{3,4}
Галектин-3,	8,6	7,4	8,8	12,34	0,001	$p_{1,2}=0,06, p_{1,3}=0,647$ $p_{1,4}=0,001, p_{2,3}=0,08$
нг/мл	(5,9-13,4)	(6,7-16,0)	(6,4-18,3)	(9,3-18,8)	-,	$p_{2,4}=0,001, p_{3,4}=0,001$
Альдостерон,	68,7	110,0	89,0	123,4		$p_{1,2}=0,001, p_{1,3}=0,01$
пг/мл	(66,1-86,3)	(75,6-117,1)	(80,0-120,0)	(92,6-198,8)	0,001	$p_{1,4}=0,0001, p_{2,3}=0,07$
111 / 19131			` ' '	(72,0 170,0)		p _{2,4} =0,001, p _{3,4} =0,0001
GDF-15,	725,9	641,5	687,5	1020,1		$p_{1,2}=0,05, p_{1,3}=0,124$
пг/мл	(613,5-	(534,6-	(554,8-	(669,1-	0,001	p _{1,4} =0,0001, p _{2,3} =0,236
111 / IVIJ1	854,1)	829,1)	1501,4)	1243,9)		p _{2,4} =0,001, p _{3,4} =0,0001
TGF-beta1,	1961,6	3934,6	2643,1	3678,2		$p_{1,2}=0,01, p_{1,3}=0,04$
пг/мл	(1434,9-	(3203,9-	(2165,9-	(2348,9-	0,001	p _{1,4} =0,0001, p _{2,3} =0,929
111 / IVIJ1	1327,4)	5355,4)	4259,4)	4751,4)		p _{2,4} =0,245, p _{3,4} =0,147
CTGF,	179,8	175,4	120,9	220,9		$p_{1,2}=0,359, p_{1,3}=0,01$
пг/мл	(164,5-	(128,4-	(42,8-210,3)	(178,9-	0,001	$p_{1,4}=0,0001, p_{2,3}=0,04$
111 / IVIJ1	224,6)	203,4)	(42,8-210,3)	306,4)		p _{2,4} =0,001, p _{3,4} =0,0001
PIIINP,	58,3	59,4	61,6	92,2		p _{1,2} =0,951, p _{1,3} =0,781
нг/мл	(49,8-90,9)	(47,7-63,4)	(57,4-105,5)	(66,4-125,1)	0,001	$p_{1,4}=0,0001, p_{2,3}=0,854$ $p_{2,4}=0,001, p_{3,4}=0,0001$
	2839,1	2986,1	3567,1	4344,1		$p_{1,2}=0,899, p_{1,3}=0,01$
PINP,	(1412,1-	(2623,1-	(2498,1-	(4122,1-	0,001	$p_{1,4}=0,0001, p_{2,3}=0,04$
нг/мл	3458,1)	3571,1)	4986,1)	4567,1)	0,001	p _{2,4} =0,001, p _{3,4} =0,0001
Примечание – р				герию Круска	ла-Уол.	

По результатам статистического анализа установлено, что степень выраженности фиброза миокарда ЛП у пациентов с ФП положительно коррелировала с концентрациями профиброгенных факторов в крови галектина-3 (Rho=0,709, p=0,00001), альдостерона (Rho=0,522, p=0,00001), TGF-beta1 (Rho=0,447, p=0,00004), GDF-15 (Rho=0,574, p=0,00001), PINP (Rho=0,425, p=0,0003) и PIIINP (Rho=0,426, p=0,00009). Провоспалительные биомаркеры в крови у пациентов с ФП также положительно коррелировали со степенью выраженности фиброза, но наиболее сильная связь была установлена с концентрацией в крови ИЛ-6 (Rho=0,532, p=0,0001). По данным многофакторного регрессионного анализа, методом пошагового исключения менее значимых предикторов установлено, что из числа изучаемых биомаркеров фиброза и воспаления наиболее значимое влияние на распространенность фиброза ЛП (% фиброза от общей площади левого предсердия) оказывали галектин-3 (*Beta*=0,304, p=0,02), GDF-15 (*Beta*=0,396, p=0,0009), PINP (*Beta*=0,254, p=0,008), PIIINP (*Beta*=0,292, p=0,006) и ИЛ-6 (*Beta*=0,245, p=0,02).

Все пациенты с $\Phi\Pi$, которых направляли на РЧА, были обследованы на предмет исключения СОАС. По данным электроанатомического картирования миокарда левого предсердия установлено, что у пациентов с $\Phi\Pi$ и СОАС выраженность фиброза была больше,

чем у больных с ФП без СОАС (28,6 (23,6–36,6) и 13,5 (9,9–23,6)%, p=0,0002). Корреляционный анализ выявил сильную положительную связь степени выраженности фиброза с индексом апноэ/гипопноэ во время сна (Rho=0,708, p=0,00001) и отрицательную связь с минимальным уровнем SpO₂ (Rho=-0,513, p=0,02). Установленная закономерность подтверждена данными регрессионного анализа, оценивавшего связь индекса апноэ/гипопноэ и степени выраженности фиброза (Beta=1,22, p=0,0001). У пациентов с ФП и СОАС корреляционно-регрессионный анализ выявил наиболее сильную положительную связь между степенью выраженности фиброза и следующими биомаркерами: PINP (Rho=0,572, p=0,0001; Beta=0,511, p=0,0001) и галектином-3 (Rho=0,449, p=0,0009; Beta=0,807, p=0,0001). Наиболее важные предикторы, влияющие на степень выраженность фиброза миокарда у пациентов с ФП, были включены в многофакторную регрессионную модель. Установлены наиболее значимые факторы, влияющие выраженность фиброза ЛП у пациентов с ФП: GDF-15 (Beta=0,417, p=0,03), ТЭЖ (Beta=0,314, p=0,02) и ИАГ (Beta=0,373, p=0,03). По данным регрессионного анализа получено уравнение расчета% фиброза от общей площади ЛП у пациентов с ФП и МС:

$$F = 0.006 \times GDF$$
-15, nг/мл + 2,144 \times ТЭЖ, мм + 0,226 \times ИАГ, кол-во в час

Результаты электроанатомического картирования ЛП при ФП позволили установить, что зоны низкого вольтажа, характеризующие фиброз миокарда, распределены по передней, задней стенке ЛП или диффузно с вовлечением изменений миокарда обеих стенок ЛП. При сравнении встречаемости различных локализаций фиброза миокарда ЛП установлено, что у пациентов с ФП и МС диффузное распределение фиброза миокарда ЛП наблюдалось чаще, чем у пациентов с $\Phi\Pi$ без MC (22/43 (51,2%) и 3/36 (8,3%), p=0,0001). По данным биномиального регрессионного анализа выявлено, что МС увеличивал в 5,2 раза вероятность диффузного распространения фиброза миокарда ЛП у пациентов с ФП (ОШ=5,24; 95% ДИ 1,81-15,14, p=0,001). Установлено, что увеличение числа компонентов МС ассоциировано с повышением вероятности диффузного фиброза миокарда ЛП у пациентов с ФП (ОШ=1,64; 95% ДИ 1,18-2,26, p=0,001). Увеличение длительности анамнеза МС (ОШ=1,17; 95% ДИ 1,02-1,46, p=0,041) в большей степени повышало вероятность диффузного фиброза, чем длительность анамнеза ФП (ОШ=1,01; 95% ДИ 0,92-1,14, р=0,775). Анализ влияния параметров, характеризующих ожирение (ИМТ, ОТ, ТЭЖ), у обследованных пациентов с ФП позволил установить, что только увеличение ТЭЖ значимо повышало вероятность диффузного фиброза (ОШ=1,55; 95% ДИ 1,12-2,14, p=0,008). По данным биномиального регрессионного анализа установлено, что из числа изучаемых биомаркеров только увеличение концентрации альдостерона (ОШ=1,021; 95% ДИ 1,005-1,034, р=0,003) и галектина-3 (ОШ=1,132; 95% ДИ 1,034-1,236, p=0,004) значимо повышали вероятность диффузного фиброза ЛП у пациентов с ФП. С помощью ROC-анализа получены пороговые значения ТЭЖ, альдостерона и галектина-3 в крови, превышение которых в статистически значимой степени увеличивало риск диффузного фиброза ЛП у пациентов с ФП, установленного по данным электроанатомического картирования перед РЧА (таблица 8).

Таблица 8 – Результаты ROC-анализа с определением пороговых значений факторов риска диффузного фиброза миокарда левого предсердия у пациентов с фибрилляцией предсердий

Биомаркеры	AUC±	Статистическая	Пороговое	ОР 95% ДИ		Статистическая
Биомаркеры	ст. ошибка	значимость, р	значение			значимость, р
Альдостерон, пг/мл	$0,761\pm0,06$	0,01	>132,6	5,47	1,97-15,14	0,00001
Галектин-3, нг/мл	$0,717\pm0,06$	0,0004	>8,5	5,50	1,96-15,41	0,00001
ТЭЖ, мм	$0,744\pm0,06$	0,00004	>5,8	8,43	2,74-24,97	0,00001

Генетические факторы риска фибрилляции предсердий у пациентов с метаболическим синдромом

При анализе встречаемости генотипов C(-344)Т гена CYP11B2 установлено, что генотип (-344)ТТ у пациентов с МС встречается чаще, чем у здоровых. Носительство генотипа (-344)ТТ у пациентов с ФП и МС встречалось чаще, чем у пациентов с ФП без МС. Встречаемость генотипа (-344)СТ гена CYP11B2 в когорте значимо не различалась в зависимости от МС и/или ФП. Выявлена большая частота генотипа (-344)СС гена CYP11B2 у пациентов с ФП без МС, чем у больных с МС без ФП и пациентов с ФП и МС (таблица 9).

Таблица 9 – Распределение ТТ, СТ и СС генотипов и встречаемость Т и С аллелей С(–344)Т гена *CYP11B2* (rs1799998) у пациентов с метаболическим синдромом, фибрилляцией предсердий и у обследованных контрольной группы

Гоулган	Ген	нотипы, n/n _{общ}	. (%)	Аллели	
Группы	(-344)TT	(-344)CT	(-344)CC	(-344)T	(-344)C
MC (-) ΦΠ (-) n=228 (1)	61/228 (26,8%)	104/228 (45,6%)	63/228 (27,6%)	0,49	0,51
MC (+) ΦΠ (-) n=121 (2)	47/121 (38,8%)	48/121 (39,7%)	26/121 (21,5%)	0,59	0,41
MC (-) ΦΠ (+) n=66 (3)	11/66 (16,7%)	28/66 (42,4%)	27/66 (40,9%)	0,38	0,62
MC (+) ΦΠ (+) n=111 (4)	35/111 (31,5%)	50/111 (45,1%)	26/111 (23,4%)	0,54	0,46
	$p_{1,2,3,4}=0,01$	$p_{1,2,3,4}=0,287$	$p_{1,2,3,4}=0,017$	p _{1,2,3,4} =	=0,002
Статистическая	$p_{1,2}=0,021, p_{1,3}=0,094$		$p_{1,2}=0,709, p_{1,3}=0,005$	$p_{1,2}=0,022$	$p_{1,3}=0,018$
значимость, р	$p_{1,4}=0,360, p_{2,3}=0,008$	_	$p_{1,4}=0,972, p_{2,3}=0,005$	$p_{1,4}=0,273, p_{2,3}=0,0001$	
	$p_{2,4}=0,245, p_{3,4}=0,03$		$p_{2,4}=0,724, p_{3,4}=0,015$	$p_{2,4}=0,310$	$p_{3,4}=0,004$

При оценке концентрации альдостерона в сыворотке крови установлено, что у пациентов с $\Phi\Pi$ и MC — носителей генотипа (-344)TT гена CYP11B2 — уровень данного биомаркера фиброза выше, чем у пациентов с генотипом (-344)CC гена CYP11B2 (p=0,00006) (таблица 10). Лишь у пациентов с MC без $\Phi\Pi$ — носителей аллеля T гена отмечена более высокая концентрация альдостерона, чем у носителей аллеля C гена CYP11B2 (148,6 (112,1;186,3) и 122,2 (97,5;164,6), p=0,006). Различий концентрации альдостерона в сыворотке крови у пациентов с $\Phi\Pi$ и у обследованных без MC и $\Phi\Pi$ в зависимости от носительства аллелей T и C гена CYP11B2 не выявлено (p>0,05).

Таблица 10 – Концентрация альдостерона в крови у пациентов с метаболическим синдромом, фибрилляцией предсердий и у здоровых – носителей разных вариантов C(-344)Т гена CYP11B2

	Концентрация альдостерона в крови, пг/мл				
Генотип	МС (-) ФП (-)	MC (+) ΦΠ (-)	MC (-) ΦΠ (+)	MC (+) ΦΠ (+)	
	n=228	n=121	n=66	n=111	
(-344)TT (1)	97,2 (63,2;128,1)	170,1 (130,1;206,1)	98,1 (70,1;141,4)	167,1 (148,1;200,5)	
(-344)CT (2)	82,2 (64,6;103,5)	126,9 (100,2;174,3)	89,9 (64,4;110,5)	128,1 (77,1;181,7)	
(-344)CC (3)	72,2 (55,3;86,6)	113,8 (87,2;144,6)	79,3 (63,1;92,1)	115,1 (92,1;148,3)	
	$p_{1,2,3}=0,02$	$p_{1,2,3}=0,0002$	$p_{1,2,3}=0,01$	$p_{1,2,3}=0,006$	
Статистическая	$p_{1,2}=0,001,$	$p_{1,2}=0,005$	$p_{1,2}=0,012$	$p_{1,2}=0,002$	
значимость, р	$p_{1,3}=0,0001$	$p_{1,3}=0,00006$	$p_{1,3}=0,01$	$p_{1,3}=0,00006$	
	$p_{2,3}=0,07$	$p_{2,3}=0,116$	$p_{2,3}=0,06$	$p_{2,3}=0,00001$	

При исследовании пациентов с МС (n=232) не установлено статистически значимого увеличения вероятности $\Phi\Pi$ у больных носителей генотипа (-344)ТТ гена *CYP11B2* (OШ=0,28; 95% ДИ 0,42-1,25, p=0,245). Носительство генотипа (-344)ТТ гена *CYP11B2* у пациентов с $\Phi\Pi$

(n=177) ассоциировано с увеличением в 2,3 раза вероятности МС (ОШ=2,31; 95% ДИ 1,08-4,93, p=0,03). При анализе полученных данных у обследованных без ФП (n=349) установлено, что носительство генотипа (-344)ТТ гена *CYP11B2* увеличивало вероятность МС в 1,7 раза (ОШ=1,74; 95% ДИ 1,09-2,78, p=0,021). Аллель Т (генотипы TT+CT) встречался у обследованных во всех группах сравнения, однако только у пациентов с МС без ФП встречаемость аллеля Т была значимо выше, чем у пациентов с ФП без МС (59,0% (142/242) и 38,0% (50/132), p=0,0001) и выше, чем у здоровых (59,0% (142/242) и 49,0% (226/456), p=0,022). Носительство аллеля Т гена *CYP11B2* ассоциировано с увеличением вероятности МС в общей когорте обследованных (ОШ=1,47; 95% ДИ 1,15-1,87, p=0,003). При анализе данных в когорте пациентов с ФП (n=177) установлено, что носительство аллеля Т было ассоциировано с увеличением вероятности МС (ОШ=1,93; 95% ДИ 1,24-2,99, p=0,004).

При сравнении распространенности вариантов генотипов G(+915)С гена TGFB1 у пациентов с $\Phi\Pi$ в зависимости от наличия диффузного или локального фиброза миокарда ЛП статистически значимых различий не установлено. При анализе встречаемости генотипов C(-344)Т гена CYP11B2 по вариантам установлено, что генотип (-344)ТТ у пациентов с $\Phi\Pi$ и диффузным фиброзом ЛП встречался чаще, чем у больных с $\Phi\Pi$ и локальным фиброзом ЛП, $(16/28\ (57,1\%)\ и\ 12/51\ (23,5\%)\ , p=0,003)$. Носительство генотипа (-344)СС у пациентов с $\Phi\Pi$ и диффузным фиброзом встречалось реже, чем у пациентов с $\Phi\Pi$ и локальным фиброзом $(4/28\ (24,3\%)\ u\ 22/51\ (43,9\%)\ , p=0,01)$. Носительство генотипа (-344)ТТ гена CYP11B2 в 4,3 раза увеличивало вероятность диффузного фиброза ЛП у пациентов с $\Phi\Pi$ (OIII=4,33;95% ДИ 1,61-11,66 , p=0,003). У пациентов с $\Phi\Pi$ и диффузным фиброзом ЛП носительство аллеля Π встречалось чаще, чем у больных с $\Phi\Pi$ и локальным фиброзом, $(40/56\ (71,0\%)\ u\ 41/102\ (40,0\%)\ , p=0,0001$). Следовательно, носительство аллеля Π гена CYP11B2 ассоциировано с повышением вероятности диффузного фиброза миокарда ЛП у пациентов с $\Phi\Pi$ (OIII=3,72; 95% ДИ 1,84-7,51, p=0,0001).

Носительство генотипа GG гена TGFB1 у пациентов с ФП и МС встречалось чаще, чем у пациентов с МС без ФП, больных с ФП без МС и чаще, чем в контрольной группе. Встречаемость носительства генотипа GG у пациентов с МС без ФП и ФП без МС не отличалась от этого показателя у обследованных в группе контроля. Встречаемость генотипа GC(+915) гена TGFB1 в группах статистически значимо не различалась (таблица 11). При сравнении концентраций TGF-beta1 у обследованных в различных группах в зависимости от носительства генотипов (+915)GG, (+915)GC и (+915)CC гена TGFB1 установлено, что уровень TGF-beta1 в сыворотке крови у здоровых — носителей генотипа (+915)GG выше, чем у носителей (+915)CC генотипа.

Таблица 11 — Распределение генотипов G(+915)С гена TGFB1 у пациентов с метаболическим синдромом, фибрилляцией предсердий и в контрольной группе

Γην	Ген	Аллели			
Группы	(+915)GG	(+915)GC	(+915)CC	(+915)G	(+915)C
MC (-) ΦΠ (-) n=228 (1)	181/228 (79,4%)	26/228 (11,4%)	21/228 (9,2%)	0,85	0,15
MC (+) ΦΠ (-) n=121 (2)	100/121 (82,6%)	12/121 (9,9%)	9/121 (7,5%)	0,88	0,12
MC (-) ФП (+) n=66 (3)	50/66 (75,8%)	6/66 (9,1%)	10/66 (15,1%)	0,80	0,20
MC (+) ΦΠ (+) n=111 (4)	102/111 (91,9%)	7/111 (6,3%)	2/111 (1,8%)	0,95	0,05
	$p_{1,2,3,4}=0,017$	$p_{1,2,3,4}=0,523$	$p_{1,2,3,4}=0,013$	$p_{1,2,3,4}$ =	0,0001
Статистическая	$p_{1,2}=0,465, p_{1,3}=0,527$		$p_{1,2}=0,574, p_{1,3}=0,167$	$p_{1,2}=0,363,$	$p_{1,3}=0,187$
значимость, р	$p_{1,4}=0,004, p_{2,3}=0,259$	_	$p_{1,4}=0,011, p_{2,3}=0,096$	$p_{1,4}=0,0001, p_{2,3}=0,059$	
	p _{2,4} =0,037, p _{3,4} =0,003		p _{2,4} =0,044, p _{3,4} =0,0001	$p_{2,4}=0,005,$	$p_{3,4}=0,0001$

Концентрация TGF-beta1 у пациентов с ФП и МС — носителей генотипа (+915)GG выше, чем у больных с носительством (+915)CC генотипа гена TGFB1. Концентрации TGF-beta1 у пациентов с МС без ФП статистически значимо не различались в зависимости от генотипов G(+915)C гена TGFB1 (таблица 12). Концентрация TGF-beta1 у обследованных без ФП и без МС — носителей аллеля G (генотипов GG+GC) выше, чем у носителей C аллеля (генотипов GC+CC) (2189,2 (1681,2;3516,1) и 1457,1 (1014,1;2587,2) пг/мл, p=0,0001). Концентрация TGF-beta1 в крови у пациентов с ФП и МС — носителей аллеля G выше, чем у носителей C аллеля, (4332,2 (3230,3;3790,1) и 1890,6 (1190,1;3790,1) пг/мл, p=0,023). Уровень TGF-beta1 в крови у пациентов с ФП без МС — носителей аллеля G выше, чем у носителей C аллеля (2806,1 (1940,1;3807,5) и 2310,3 (1295,2;2690,5), p=0,021). Уровень TGF-beta1 в крови у пациентов с МС без ФП значимо не различался в зависимости от носительства аллелей G (GG+GC) и C (GC+CC) гена TGFB1.

Таблица 12 — Концентрация трансформирующего фактора роста-бета1 в крови у пациентов с метаболическим синдромом, фибрилляцией предсердий и в контрольной группе — у носителей различных вариантов G(+915)С гена *TGFB1*

	1			
	Концентрация	трансформирующего	фактора роста бета-1	в крови, пг/мл
Генотип	МС (-) ФП (-)	MC (+) ΦΠ (-)	МС (-) ФП (+)	MC (+) ΦΠ (+)
	n=228	n=121	n=66	n=111
(+015)CC (1)	2190,2	2431,1	2467,1	4364,2
(+915)GG (1)	(1783,2;3572,1)	(2102,1;3274,3)	(1640,1;3590,5)	(3257,5;6855,5)
(+015)CC (2)	1969,1	2690,2	2110,3	2504,6
(+915)GC (2)	(1433,1;3187,2)	(1936,5;3210,5)	(1576,2;3355,5)	(1106,5;3783,5)
(+015)CC (2)	894,3	2128,4	1797,3	1540,1
(+915)CC (3)	(705,2;1185,7)	(1915,1;2175,3)	(1180,1;2690,4)	(1190,1;1890,2)
	$p_{1,2,3}=0,0001$	$p_{1,2,3}=0,362$	$p_{1,2,3}=0,028$	$p_{1,2,3}=0,024$
Статистическая	p _{1,2} =0,179		p _{1,2} =0,267	p _{1,2} =0,001
значимость, р	$p_{1,3}=0,00001$	_	$p_{1,3}=0,312$	$p_{1,3}=0,02$
	$p_{2,3}=0,0001$		$p_{2,3}=0,02$	$p_{2,3}=0,01$

Носительство генотипа GG(+915) гена TGFB1 у пациентов с MC (n=232) повышало вероятность $\Phi\Pi$ в 2,4 раза (ОШ=2,38; 95% ДИ 1,04-5,45, p=0,037). При анализе встречаемости GG(+915) генотипа в когорте обследованных без MC (n=294) не было установлено влияния этого показателя на вероятность $\Phi\Pi$ без MC (ОШ=0,81; 95% ДИ 0,42-1,55, p=0,527). В то же время выявлено, что носительство генотипа GG(+915) у пациентов с $\Phi\Pi$ и MC в сравнении с обследованными без $\Phi\Pi$ и MC увеличивало вероятность $\Phi\Pi$ в 2,9 раза (ОШ=2,94; 95% ДИ 1,39-6,25, p=0,004). В обследованных выборках все пациенты с MC без $\Phi\Pi$ и $\Phi\Pi$ без MC являлись носителями генотипов GG и GC. Различий в частоте аллеля G между группой контроля и пациентами с MC без $\Phi\Pi$ и $\Phi\Pi$ без MC не выявлено.

Генотип СС(+915) гена TGFB1 у пациентов с ФП и МС встречался реже, чем у пациентов с МС без ФП (2/111 (1,8%) и 9/121 (7,5%), p=0,044) и реже, чем группе без МС и без ФП (2/111 (1,8%) и 21/228 (9,2%), p=0,011). Генотип СС(+915) гена TGFB1 в группе пациентов с ФП и МС встречался реже, чем у больных с ФП без МС (2/111 (1,8%) и 10/66 (15,1%), p=0,0001). Аллель G (генотипы GG+GC) встречался во всех группах сравнения, однако у пациентов с ФП и МС встречаемость аллеля G была выше, чем у пациентов с ФП без МС (95,0% (211/222) и 80,0% (106/132), p=0,0001), у больных с МС без ФП (95,0% (211/222) и 87,6% (212/242), p=0,005) и выше, чем у здоровых (95,0% (211/222) и 85,1% (388/456), p=0,0001). Установлено, что носительство аллеля G было ассоциировано с увеличением вероятности ФП в когорте пациентов с МС (ОШ=2,71; 95% ДИ 1,22-5,56, p=0,005).

Предикторы развития и прогрессирования фибрилляции предсердий у пациентов с метаболическим синдромом

В период с 2015 по 2017 гг. в исследовательскую базу были включены данные обследованных без $\Phi\Pi$ (n=550) с разным числом компонентов MC: 0 (n=182), 1 (n=73), 2 (n=62),

3 (n=70), 4 (n=93) и 5 (n=70). Период проспективного наблюдения составил 5,0 лет, в течение этого времени 1 раз в 6 месяцев осуществлялся телефонный контакт с обследованными для выявления факта регистрации ФП по данным ЭКГ. По результатам проспективного анализа установлено, что у пациентов с МС частота регистрации ФП была выше, чем у обследованных без MC (22/233 (9,4%) и 6/317 (1,9%), p=0,0001). Следовательно, относительный риск развития ФП у пациентов с МС был в 4,9 раза выше, чем у обследованных без МС (ОР=4,99; 95% ДИ 2,06-12,11, p=0,0001). Следует отметить, что встречаемость СОАС у пациентов с МС и зарегистрированной ФП была выше в 2 раза, чем у больных с МС без выявленной ФП (12/22 (54,5%) и 56/211 (26,5%), p=0,006). Длительность анамнеза МС была больше у пациентов с зарегистрированной ФП, чем у больных без выявленной аритмии (10 (5-17) и 6 (5-12), р=0,023). При логистическом регрессионном анализе установлено, что увеличение длительности анамнеза МС в 1,3 раза повышало риск ФП у пациентов с МС (ОР=1,28; 95% ДИ 1,14-1,43, p=0,00002), а наличие СОАС увеличивало риск ФП у пациентов с МС в 3,3 раза (OP=3,32; 95% ДИ 1,36-8,11, p=0,009) за период 5-летнего наблюдения. Антигипертензивная терапия снижала риск развития ФП у пациентов с МС (OP=0,35; 95% ДИ 0,15-0,86, p=0,024). Установлено, что диаметр ЛП (44,8 \pm 4,8 и 41,8 \pm 4,9, p=0,039), объем ЛП (80,7 \pm 25,4 и 70,2 \pm 20,3, p=0,01) и индекс объема ЛП (39,5±9,2 и 34,1±9,8, p=0,004) и ТЭЖ (5,6±2,2 и 4,6±1,4, p=0,0002) у пациентов с МС и зарегистрированной ФП были больше, чем у больных с МС без выявленной ФП при проспективном наблюдении. При многофакторном анализе с поэтапным исключением наиболее значимое влияние на риск развития ФП при МС оказывала ТЭЖ, увеличение которой повышало риск ФП в 2,2 раза (ОР=2,18; 95% ДИ 1,43-3,31, p=0,0003).

Концентрации альдостерона, галектина-3, GDF-15, PINP и PIIINP в крови у больных с MC и зарегистрированной $\Phi\Pi$ выше, чем у пациентов с MC без выявленной $\Phi\Pi$ при проспективном наблюдении. Концентрация ИЛ-6 значимо была выше у пациентов с MC и зарегистрированной $\Phi\Pi$, чем у пациентов без выявленной аритмии. Концентрации TGF-beta1, CTGF, CPБ, KT-1 и Φ HO-альфа в этих группах значимо не различались (таблица 13).

Таблица 13 — Сравнение концентраций в крови биомаркеров фиброза и воспаления у пациентов с метаболическим синдромом и впервые возникшей фибрилляцией предсердий и без развития данной аритмии при 5-летнем проспективном наблюдении

Биомаркеры	МС без зарегистрированной ФП n=211	МС с зарегистрированной ФП n=22	Статистическая значимость, р
Альдостерон, пг/мл	112,3 (89,8-156,3)	167,0 (124,6-189,6)	0,0006
Галектин-3, нг/мл	5,2 (8,7-14,2)	12,6 (8,7-14,9)	0,00001
TGF-beta1, пг/мл	2156,7 (2057,8-2991,4)	2671,9 (1914,3-3630,4)	0,189
CTGF, пг/мл	137,5 (114,8-156,3)	156,1 (101,1-188,2)	0,083
GDF-15, пг/мл	651,4 (520,5-827,4)	1220,5 (881,1-2181,2)	0,00001
PINP, пг/мл	2000,2 (1456,4-2389,1)	2478,2 (2224,3-3057,5)	0,001
PIIINP, нг/мл	57,6 (45,5-78,3)	87,8 (50,6-121,7)	0,01
СРБ, мг/мл	2,5 (1,4-3,8)	2,6 (1,9-3,5)	0,664
КТ-1, пг/мл	570,1 (480,3-679,0)	622,5 (351,5-1070,5)	0,602
ФНО-альфа, пг/мл	4,1 (3,1-5,8)	5,3 (3,5-6,5)	0,066
ИЛ-6, пг/мл	2,6 (2,1-3,8)	4,5 (3,2-6,5)	0,000002

Результаты однофакторного регрессионного анализа влияния биомаркеров фиброза и воспаления на риск развития $\Phi\Pi$ у пациентов с MC при проспективном наблюдении позволили выявить наиболее значимые: альдостерон, галектин-3, GDF-15, PIIINP и ИЛ-6. При ступенчатом исключении биомаркеров фиброза и воспаления из модели многофакторного прогнозирования риска $\Phi\Pi$ у пациентов с MC наиболее значимое влияние установлено для галектина-3 (OP=1,54; 95% ДИ 1,25-1,89, p=0,00005), PIIINP (OP=1,02; 95% ДИ 1,01-1,04, p=0,004) и ИЛ-6 (OP=1,68; 95% ДИ 1,14-2,49, p=0,009). Факторы риска, влияющие на развитие

ФП у больных с МС были включены в общую многофакторную модель для выявления наиболее значимых предикторов. Установлено, что наибольшее влияние на риск развития ФП оказывали длительность анамнеза МС (OP=1,31; 95% ДИ 1,03-1,65, p=0,029), ТЭЖ (OP=2,36; 95% ДИ 1,38-4,04, p=0,001), ИЛ-6 (OP=1,94; 95% ДИ 1,05-3,59, p=0,034), галектин-3 (OP=1,55; 95% ДИ 1,18-2,03, p=0,001) и РШNР (OP=1,08; 95% ДИ 1,02-1,14, p=0,01). По данным ROС-анализа установлены пороговые значения выявленных предикторов развития ФП у пациентов с МС (таблица 14).

Таблица 14 — Результаты ROC-анализа с определением пороговых значений факторов риска развития фибрилляции предсердий у пациентов с метаболическим синдромом

Биомаркеры	AUC±	Статистическая	Пороговое	OP	95% ДИ	Статистическая
Биомаркеры	ст. ошибка	значимость, р	значение	Oi	95/0 ДИ	значимость, р
PIIINP, нг/мл	$0,959\pm0,02$	0,00001	>85,6	2,34	1,38-3,98	0,0005
Галектин-3, нг/мл	$0,919\pm0,02$	0,00001	>8,4	6,42	3,17-13,04	0,000001
ИЛ-6, пг/мл	0,907±0,02	0,00001	>4,0	2,34	1,38-3,98	0,0001
ТЭЖ, мм	$0,904\pm0,02$	0,00001	>4,8	4,21	1,69-10,37	0,000001
Длительность анамнеза МС, лет	0,799±0,03	0,00001	>11,0	5,31	2,32-12,17	0,0001

В проспективное наблюдение было включено 320 пациентов, госпитализированных в клинику с 2015 по 2019 гг. с зарегистрированной ранее $\Phi\Pi$, в возрасте от 35 до 65 лет с пароксизмальной (n=201), персистирующей (n=70) и постоянной (n=49) формами аритмии. На момент включения в исследование пациенты с $\Phi\Pi$ получали антиаритмическую терапию, рекомендованную на амбулаторном этапе. При оценке ремоделирования камер сердца установлено, что объем ЛП у пациентов с персистирующей формой $\Phi\Pi$ больше, чем у больных с пароксизмальной $\Phi\Pi$ (95,3±26,6 и 80,6±23,4, p=0,001). Выявлено, что объем ПП у пациентов с персистирующей формой $\Phi\Pi$ больше, чем у больных с пароксизмальной $\Phi\Pi$ (75,6±28,4 и 64,5±19,9, p=0,012). ТЭЖ у пациентов с постоянной формой $\Phi\Pi$ был больше, чем у больных с персистирующей и пароксизмальной формами данной аритмией (7,1±3,3 и 6,8±2,4 и 5,4±2,1; p=0,001, p=0,0001, соответственно).

Для выявления ранних предикторов развития ФП у пациентов с МС был выполнен анализ концентраций биомаркеров фиброза и воспаления в зависимости от форм ФП. Концентрации в крови TGF-beta1 (3678,5 (2279,4-6700,6) и 2429,9 (1388,8-3349,4) и 2228,3 (1839,9-2459,1); p=0,01, p=0,001, соответственно), СТСБ (183,1 (129,7-224,6) и 133,9 (102,3-178,3) и 78,6 (61,6-97,5); p=0,01, p=0,001, соответственно) и PINP (4567,2(2546,9-5567,4) и 2806,7(1600,0-4234,1) и 1893,6 (1470,3-2521,1); p=0,001, p=0,0001, соответственно) у пациентов с пароксизмальной формой ФП и МС выше, чем у пациентов с персистирующей и постоянной формами аритмии у больных с МС. В свою очередь, у больных с персистирующей формой ФП и МС уровни альдостерона (221,5 (107,4-272,1) и 140,5 (90,4-182,2) и 85,1 (72,5-111,5); p=0,001, p=0,0001, соответственно), галектина-3 (12,5 (5,2-18,3) и 8,9 (5,0-14,4) и 6,3 (3,3-12,9); p=0,003, p=0,0001, соответственно) и РШПР (101,3 (84,9-147,1) и 73,4 (55,6-120,5) и 78,5 (62,3-89,7); p=0,001, p=0,001, соответственно) выше, чем у пациентов с пароксизмальной и постоянной формами ФП и МС. Более высокий уровень GDF-15 выявлен у пациентов с постоянной формой ФП в сравнении с больными с пароксизмальной и персистирующей формами ФП и МС (1345,1 (1102,7-1729,2) и 792,1 (619,9-1101,1) и 982,7 (787,1-1252,0); р=0,01, р=0,001, соответственно).

При сравнении концентраций биомаркеров воспаления в крови обследованных установлено, что у пациентов с пароксизмальной формой ФП и МС уровни СРБ (3,1 (1,6-4,3) и 2,2 (0,9-3,2) и 2,1 (1,3-4,1); p=0,001, p=0,001, соответственно), КТ-1 (992,1(568,5-1050,3) и 892,5(610,3-1081,3) и 692,1(625,1-1472,2); p=0,01, p=0,001, соответственно) и ИЛ-6 (3,4 (1,6-5,6) и 2,4 (0,8-3,5) и 2,3 (1,1-3,1); p=0,004, p=0,001, соответственно) выше, чем у пациентов с персистирующей и постоянной формой ФП в сочетании с МС. Концентрация ФНО-альфа в

крови у пациентов с персистирующей $\Phi\Pi$ и MC выше, чем у пациентов с постоянной формой аритмии и MC Φ HO-альфа (5,8 (3,6-7,8) и 3,6 (2,8-6,8); p=0,01).

Для выявления ранних предикторов развития ФП у пациентов с МС выполнен анализ клинических, антропометрических, лабораторных и эхокардиографических данных пациентов с ФП и MC (n=76), у которых был зарегистрирован пароксизм ФП впервые на момент госпитализации или отмечен единственный эпизод ФП более 1 года назад. При сравнении основных клинических и антропометрических данных значимых различий не установлено (p>0.05). Группы были сопоставимы по возрасту, гендерному распределению, встречаемости АГ и СД (p>0,05). Доли пациентов с пароксизмальной и персистирующей формами ФП также не различались (р>0,05). Установлено, что ТЭЖ у больных с впервые зарегистрированным пароксизмом ФП и МС на момент включения в исследование была больше, чем у пациентов с единственным эпизодом в анамнезе $(6,5\pm2,1 \text{ и } 5,2\pm2,3,\text{ p=0},029)$. По результатам логистического регрессионного анализа установлено, что увеличение концентрации галектина-3, TGF-beta1, СТСБ, PIIINР и ИЛ-6 повышает вероятность прогнозирования риска впервые выявленного пароксизма ФП у пациентов с МС, однако по результатам многофакторного анализа со ступенчатым исключением факторов риска выявлено, что увеличение концентрации TGF-beta1 значимо повышает риск впервые зарегистрированного эпизода ФП у пациентов с МС (ОШ=1,12; 95% ДИ 1,01-1,21, p=0,0006). С помощью ROC-анализа выполнено моделирование влияния концентрации TGF-beta1 на риск впервые выявленного пароксизма ФП у пациентов с MC. ROCкривая (АUC=0,959±0,021, p=0,00001) представлена на рисунке 4, а пороговое значение концентрации TGF-beta1 составило >3871,0 пг/мл. Увеличение концентрации TGF-beta1 выше установленного порогового значения повышало вероятность впервые выявленного пароксизма $\Phi\Pi$ у пациентов с МС в 3,9 раз (ОШ=3,88; 95% ДИ 1,47-10,22, p=0,0001).

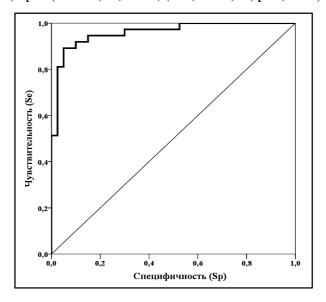


Рисунок 4 – ROC-кривая прогнозирования вероятности первого пароксизма фибрилляции предсердий у пациентов с метаболическим синдромом в зависимости от концентрации в крови трансформирующего фактора роста-бета 1

С целью определения факторов риска трансформации формы $\Phi\Pi$ изучена когорта пациентов (n=271) с пароксизмальной и персистирующей формами $\Phi\Pi$. В данный фрагмент исследования включены пациенты без МС (n=97) и больные с МС (n=174). Конечной точкой данного этапа проспективного наблюдения была трансформация формы $\Phi\Pi$, которая регистрировалась в случае перехода пароксизмальной в персистирующую или постоянную форму данной аритмии в течение 12-ти месяцев проспективного наблюдения. Выявлено, что у пациентов с МС трансформация формы $\Phi\Pi$ регистрировалась чаще, чем у больных без МС (70/174 (40,2%) и 10/97 (10,3%), p=0,00001).

Таким образом, установлено, что в обследованной когорте пациентов МС увеличивал в 3,9 раза риск трансформации формы ФП при проспективном наблюдении в течение 12-ти месяцев (OP=3,9; 95% ДИ 2,11-7,21, p=0,00001). Группы пациентов с трансформацией формы ФП в сочетании с МС были сопоставимы по возрасту, в распределении по полу, длительности анамнеза МС и ФП. Установлено, что у пациентов с трансформацией формы ФП в сочетании с МС среднее число компонентов МС было больше, чем у пациентов без трансформации формы аритмии $(4,0\pm0,8\,$ и $3,6\pm0,8\,$, p=0,009). При сравнении эхокардиографических параметров выявлено, что индексы объемов левого $(44,1\pm8,5\,$ и $40,7\pm8,4\,$, p=0,021) и правого предсердий $(36,9\pm11,3\,$ и $32,8\pm9,6\,$, p=0,027) у пациентов с трансформацией формы ФП в сочетании с МС в течение 12-ти месяцев проспективного наблюдения были больше, чем у пациентов без изменения формы аритмии. ТЭЖ у пациентов с трансформацией формы ФП была больше, чем у пациентов без трансформации формы ФП в сочетании с МС $(7,5\pm1,5\,$ и $6,1\pm1,7\,$, p=0,01). При многофакторном регрессионном анализе с включением возраста, пола, числа компонентов МС, длительности анамнеза МС и ФП было выявлено, что увеличение числа компонентов МС в 1,8 раза повышает риск трансформации формы ФП $(0)=1,83,95\%\,$ ДИ 1,17-2,87, p=0,008).

При изучении влияния различных компонентов МС на риск трансформации формы ФП в течение 12-ти месяцев проспективного наблюдения по данным биномиальной логистической регрессии установлено, что наличие АО (ОШ=2,45; 95% ДИ 1,08-5,57, p=0,032), АГ (ОШ=1,7; 95% ДИ 1,33-5,57, p=0,008) и гипертриглицеридемии (ОШ=2,83; 95% ДИ 1,44-5,56, p=0,002) увеличивали риск перехода в более устойчивую форму ФП. С целью выявления наиболее значимых предикторов риска трансформации формы ФП у пациентов с МС выполнен многофакторный анализ со ступенчатым исключением менее значимых предикторов, по данным которого установлено, что только увеличение концентрации РШNР в крови увеличивало риск трансформации формы ФП у пациентов с МС (ОШ=1,22; 95% ДИ 1,014-1,514, p=0,035). С помощью ROC-анализа построена кривая (AUC=0,651±0,05, p=0,0001) прогнозирования риска трансформации формы ФП у пациентов с МС в зависимости от концентрации РШNР в крови и установлено пороговое значение данного биомаркера — 92,2 нг/мл, при превышении которого риск перехода от пароксизмальной к персистирующей или постоянной форме ФП увеличивался в 4,5 раза (ОР=4,49; 95% ДИ 2,47-8,16, p=0,0001).

Подходы к лечению фибрилляции предсердий у пациентов с метаболическим синдромом

Выполнен ретроспективный анализ данных пациентов с пароксизмальной и персистирующей формами ФП, получавших медикаментозную антиаритмическую терапию (ААТ) до включения в исследование (n=221), в том числе пациентов с МС (n=135) и без МС (n=86). Пациенты с медикаментозной ААТ до включения в исследование принимали разные препараты: бета-адреноблокаторы — 88/221 (39,8%), соталол — 60/221 (27,1%), пропафенон — 49/221 (22,2%), амиодарон — 36/221 (16,3%), аллапинин — 18/221 (8,1%), верапамил — 5/221 (2,3%). При ретроспективном анализе выявлено отсутствие эффекта от медикаментозной ААТ на момент включения в исследование у 57% (126/221) пациентов. Установлено, что у больных с ФП и МС чаще наблюдалось отсутствие эффекта от медикаментозной ААТ, чем у больных с ФП без МС (86/135 (63,7%) и 36/86 (41,9%), p=0,002), вероятность неэффективной ААТ при МС в 2,4 раза выше, чем у пациентов без МС (ОШ=2,44; 95% ДИ 1,40-4,24, p=0,002). Увеличение числа компонентов МС статистически значимо повышало вероятность неэффективности ААТ в 1,21 раза (ОШ=1,21; 95% ДИ 1,01-1,44, p=0,03).

При многофакторном анализе с включением клинико-анамнестических, эхокардиографических и лабораторных параметров с поэтапным исключением менее значимых предикторов выявлено, что длительность анамнеза ФП (ОШ=1,13; 95% ДИ 1,08-1,32, p=0,031), индекс объема ЛП (ОШ=1,19; 95% ДИ 1,003-1,143, p=0,04) и уровень ИЛ-6 (ОШ=1,31; 95% ДИ 1,05-1,65, p=0,017) в крови оказывали наиболее значимое влияние на риск отсутствия эффекта от ААТ у пациентов с ФП и МС. По данным ROC-анализа было получено не только подтверждение влияния данных факторов на риск неэффективности ААТ, но и установлены

пороговые значения для предикторов риска: длительность анамнеза $\Phi\Pi$ >4 лет (ОШ=4,29; 95% ДИ 1,25-14,81, p=0,0002), индекс объема ЛП >42,0 мл/м² (ОШ=4,44; 95% ДИ 2,07-9,52, p=0,0005) и концентрация в крови ИЛ-6 >3,3 пг/мл (ОШ=6,1; 95% ДИ 2,61-14,31, p=0,00001).

При анализе встречаемости генотипов С(-344)Т гена СҮР11В2 по вариантам установлено, что генотип (-344)ТТ у пациентов с ФП и МС без эффекта от антиаритмической фармакотерапии встречался чаще, чем у больных с ФП и МС с эффектом от ААТ (34/75 (45,3%) и 6/33 (18,2%), р=0,008), а носительство генотипа (-344)СС у пациентов с ФП и МС без эффекта от медикаментозной антиаритмической терапии встречалось реже, чем у пациентов с ФП и МС с эффектом от антиаритмической фармакотерапии (8/75 (10,4%) и 15/33 (45,5%), p=0,00001). Следует отметить, что при сравнении встречаемости генотипа (-344)ТТ СУР11В2 у пациентов с ФП без МС в зависимости от эффекта ААТ статистически значимых различий не было установлено (p=0,076). Установлено, что из вариантов генотипов C(-344)Т гена СҮР11В2 только у больных с МС носительство генотипа (-344)ТТ статистически значимо, в 3,7 раза, увеличивало вероятность отсутствия эффекта от антиаритмической терапии у пациентов с ФП (ОШ=3,73; 95% ДИ 1,38-10,09, p=0,008). У пациентов с ФП и МС без эффекта от медикаментозной антиаритмической терапии носительство аллеля Т (ТТ+СТ) встречалось чаще, чем у больных с ФП и МС с эффектом от медикаментозного контроля синусового ритма (101/150 (67,0%) и 24/66 (36,0%), p=0,013); при этом, носительство аллеля T (генотипы TT+CT) гена *CYP11B2* было ассоциировано с увеличением вероятности диффузного фиброза миокарда ЛП у пациентов с ФП (ОШ=3,61; 95% ДИ 1,97-6,62, p=0,0001).

Клинические данные группы пациентов с пароксизмальной и персистирующей формами ФП и MC (n=135) были изучены более детально. Все пациенты имели AO, однако выявлено, что в группе больных с отсутствием эффекта от ААТ чаще встречались пациенты, у которых наблюдалось увеличение веса более чем на 10% за последний год до госпитализации, чем пациенты без набора массы тела за год (58/86 (67,4%) и 19/49 (38,8%), р=0,002). Установлено, что у пациентов с ФП и МС, которые прибавляли в весе более 10% в течение года до включения в исследование, вероятность отсутствия эффекта от медикаментозной ААТ увеличивалась в 3,3 раза по сравнению с больными, имеющими стабильный вес в течение года (ОШ=3,27; 95% ДИ 1,58-6,79, р=0,002). Установлено, что у пациентов с ФП и МС с эффектом от медикаментозной ААТ чаще встречалась контролируемая АГ с достижением целевого уровня АД, чем у больных без эффекта от ААТ (39/49 (79,6%) и 46/86 (53,5%), p=0,005). Эффективный контроль АД снижал вероятность недостаточного эффекта от медикаментозной ААТ (ОШ=0,29; 95% ДИ 0,13-0,67, р=0,005). При сравнении групп не было установлено значимых различий по встречаемости гипертриглицеридемии и числу пациентов с показаниями к липидснижающей терапии, однако число пациентов, получающих терапию статинами, в группе больных с ФП и МС без эффекта от медикаментозной ААТ было больше, чем в группе пациентов с эффектом от ААТ (50/86 (58,1%) и 32/49 (65,3%), p=0,001). Выявлено, что достижение целевого уровня ХС ЛПНП и ТГ у пациентов с ФП и МС снижало вероятность отсутствия эффекта от медикаментозной ААТ (ОШ=0,437; 95% ДИ 0,213-0,894, p=0,035).

Выявленные при ретроспективном анализе данных пациентов с ФП и МС клиникоанамнестические, антропометрические, лабораторные и эхокардиографические предикторы прогнозирования отсутствия эффекта от медикаментозной ААТ были использованы для отбора пациентов в проспективный этап исследования. Для оценки клинической значимости модели прогнозирования отсутствия эффекта от медикаментозной ААТ у пациентов с пароксизмальной и персистирующей формами ФП и МС (n=50) было выполнено наблюдение в течение 12 месяцев пациентов, которые были включены с соблюдением пороговых значений установленных предикторов: длительность анамнеза ФП не более 4 лет, индекс объема ЛП не более 42 мл/м² и концентрации в крови ИЛ-6 менее 3,3 пг/мл. Пациентам впервые на момент включения в проспективное наблюдение была назначена медикаментозная ААТ, согласно показаниям и инструкции к лекарственным препаратам. Всем пациентам даны рекомендации по модификации факторов риска: отказ от курения, снижение веса на 10% и более, контроль АД, НbА1, ХС ЛПНП и ТГ в целевом диапазоне, уровень менее 7%, регулярные умеренноинтенсивные физические нагрузки 3—4 раза в неделю. При проспективном наблюдении пациентов с ФП и МС в течение 12 месяцев установлено, что доля больных без повторных эпизодов ФП на фоне медикаментозной терапии составила 38/50 (76%), что значимо больше, чем доля пациентов с рецидивом ФП на фоне антиаритмической фармакотерапии у пациентов с МС, полученной ранее — 49/135 (36,3%). Использование полученных ранее пороговых значений предикторов риска отсутствия эффекта от медикаментозной ААТ и оптимизация лечения позволили снизить риск повторных рецидивов ФП на 36% (OP=0,64; 95% ДИ 0,53-0,78, p=0,0001).

С целью изучения влияния РЧА на прогноз пациентов с ФП и МС, а также для определения предикторов эффективности данного метода лечения выполнено проспективное наблюдение в течение 12-ти месяцев пациентов с показаниями для проведения РЧА (n=135) с различным числом компонентов MC: 1–2 компонента MC (n=35), 3 и более компонентов MC (n=77). В группу сравнения были включены 23 пациента без МС (0 компонентов). Конечной точкой проспективного наблюдения считался рецидив зарегистрированной ФП в период от 3 до 12 месяцев после РЧА. У 58 пациентов (42,9%) зарегистрирован рецидив ФП за время наблюдения после РЧА: 49/58 (84,5%) пациентов с 3 и более компонентами МС, 5/58 (8,6%) больных с 1-2 компонентами МС (20,7%) и 4/58 (6,9%) пациента без компонентов МС. В когорте пациентов с 3 и более компонентами МС больных с рецидивом ФП было больше, чем пациентов без аритмии. Следовательно, наличие МС в 4,1 раза увеличивало риск рецидива ФП после РЧА в течение 12-ти месяцев (ОР=4,11; 95% ДИ 2,19-7,65, p=0,00001). Установлено, что среднее число компонентов МС у пациентов с рецидивом ФП после РЧА было выше, чем у пациентов с эффективной РЧА (3,9 \pm 0,5 и 3,0 \pm 0,4, p=0,001). По данным биномиальной регрессии установлено, что увеличение числа компонентов МС с 0 до 5 повышало вероятность рецидива ФП после РЧА в 2,2 раза (ОШ=2,16; 95% ДИ 1,61-2,89, p=0,0001). По результатам логистической регрессии с включением в модель прогнозирования вероятности рецидива ФП после РЧА были включены возраст, пол (женский), наличие МС, длительность анамнеза МС и ФП, установлено, что наличие МС – независимый предиктор, повышающий риск повторных эпизодов ФП в 8,8 раз (ОШ=8,82; 95% ДИ 3,34-23,3, p=0,00001). При исследовании влияния различных компонентов МС на риск отсутствия эффекта от РЧА в обследованной когорте пациентов выявлено, что АО (ОШ=3,08; 95% ДИ 1,22-7,84, р=0,018) и гипертриглицеридемии (OIII=3,23; 95% ДИ 1,24-8,37, p=0,016) увеличивали вероятность рецидива $\Phi\Pi$ после РЧА.

По результатам сравнения встречаемости вариантов генотипов C(-344)Т гена CYP11B2 установлено, что у пациентов с ФП и МС с рецидивом аритмии после PЧА генотип (-344)ТТ встречался чаще, чем у больных с ФП и МС без повторных эпизодов аритмии после РЧА (30/50 (60,0%) и 9/29 (31,0%), p=0,014). Установлено, что у больных с МС носительство генотипа (-344)ТТ значимо в 3,3 раза увеличивало вероятность рецидива ФП после РЧА (ОШ=3,33; 95% ДИ 1,27-8,79, p=0,014). У пациентов с ФП и МС без эффекта от РЧА встречаемость носительства аллеля Т была выше, чем у больных с ФП и МС с эффектом от РЧА (77/100 (77,0%) и 34/58 (58,6%), p=0,015), и увеличивало в 2,4 раза риск рецидива ФП после РЧА (ОШ=2,36; 95% ДИ 1,17-4,76, p=0,015).

Клинико-анамнестические, лабораторные и эхокардиографические данные пациентов с ФП и МС (n=78), которым выполнялась РЧА, были проанализированы более подробно. При анализе данных установлено, что длительность анамнеза МС у пациентов с ФП и МС без эффекта от РЧА была больше, чем у больных без рецидивов ФП (12,0 (8,0–16,0) и 8,0 (6,0–12,0), p=0,001). Динамика веса в течение 12-ти месяцев после РЧА у пациентов с МС также контролировалась и установлено, что снижение веса на 10% и более у пациентов без рецидива ФП наблюдалось чаще, чем у больных с повторными пароксизмами аритмии (11/28 (39,3%) и 7/49 (14,3%), p=0,013). Таким образом, выявлено, что снижение веса на 10% и более при наблюдении пациентов с ФП и МС в течение 12 месяцев после РЧА способствовало снижению риска рецидива ФП на 64% (OP=0,364; 95% ДИ 0,16-0,83, p=0,013). При сравнении групп пациентов с ФП и МС в зависимости от степени выраженности фиброза миокарда ЛП выявлено, что выраженность фиброза миокарда ЛП была значимо больше у пациентов с повторными

эпизодами ФП после интервенционной терапии, чем у больных без рецидива ФП (33,1 (23,9–43,6) и 11,6 (10,4–22,2), p=0,0018). По результату логистической регрессии увеличение степени выраженности фиброза ЛП у пациентов с ФП и МС увеличивало риск рецидива ФП после РЧА (ОШ=1,48; 95% ДИ 1,03-1,78, p=0,0006).

Пациентов с контролируемой АГ и достижением целевого уровня АД в группе больных без рецидива ФП после РЧА было больше, чем в группе пациентов с повторными эпизодами ФП (26/28 (92,9%) и 30/49 (61,2%), p=0,003), эффективный контроль и достижением целевого уровня АД у пациентов с ФП и МС после РЧА снижали риск рецидива аритмии на 34% (ОР=0,66; 95% ДИ 0,52-0,84, p=0,003). При анализе липидных нарушений установлено, что гипертриглицеридемия у пациентов без эффекта от РЧА встречалась чаще, чем у пациентов без рецидива аритмии (26/49 (53,1%) и 7/28 (25,0%), p=0,017). Таким образом, наличие гипертриглицеридемии увеличивало в 2,2 раза риск рецидива ФП у пациентов с МС после РЧА (ОР=2,12; 95% ДИ 1,06-4,25, p=0,017). Установлено, что липидснижающая терапия с достижением целевых значений ХС ЛПНП и ТГ у пациентов с ФП и МС снижала риск рецидива ФП у пациентов в течение 12 месяцев после РЧА на 43% (ОР=0,57; 95% ДИ 0,36-0,91, p=0,02). Пациентов с СД в группе больных с рецидивами ФП было больше, чем в группе с эффективной РЧА (16/49 (32,7%) и 3/29 (10,3%), p=0,031). Наличие СД у обследованных пациентов с ФП и МС увеличивало риск рецидива аритмии после РЧА в течение 12 месяцев в 4,2 раза (ОР=4,20; 95% ДИ 1,10-15,99, p=0,03).

При многофакторном анализе установлено, что только ТЭЖ (ОШ=1,71; 95% ДИ 1,12-2,03, p=0,0001), концентрации галектина-3 (ОШ=1,31; 95% ДИ 1,12-1,51, p=0,0001) и GDF-15 (ОШ=1,11; 95% ДИ 1,02-1,18, p=0,0002) у пациентов с МС увеличивали вероятность рецидива ФП в течение 12 месяцев после РЧА. Для установленных предикторов риска с помощью ROC-анализа были построены кривые прогнозирования рецидива ФП у пациентов с МС в течение 12 месяцев после РЧА, по данным которого выявлены высокие значения площадей под кривыми, что соответствуют значимому влиянию данных биомаркеров на вероятность рецидива ФП после РЧА у пациентов с МС (рисунок 5). Установлены пороговые значения для концентраций в крови галектина-3 (>11,0 нг/мл; OP=3,43; 95% ДИ 1,79-6,58, p=0,0001), GDF-15 (>1380,7 пг/мл; OP=2,84; 95% ДИ 1,81-4,46, p=0,0001) и ТЭЖ (>6,4 мм; OP=4,50; 95% ДИ 2,32-8,71, p=0,0001), превышение которых в наибольшей степени влияет на риск рецидива ФП после РЧА у больных с МС. У пациентов с превышением всех трех пороговых значений биомаркеров суммарный риск рецидива ФП у пациентов с МС в течение 12 месяцев после РЧА увеличивается в 3,2 раза (OP=3,16; 95% ДИ 1,97-5,11, p=0,00001).

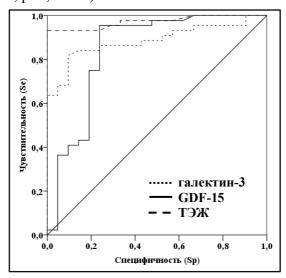


Рисунок 5 — ROC-кривые прогнозирования рецидива фибрилляции предсердий у пациентов с метаболическим синдромом в течение 12-ти месяцев после радиочастотной аблации в зависимости от концентрации в крови галектина-3, ростового фактора дифференцировки-15 и толщины эпикардиального жира

С целью оценки модели прогнозирования риска рецидива $\Phi\Pi$ у пациентов с МС в течение 12 месяцев после PЧА с использованием пороговых значений выявленных предикторов выполнено проспективное наблюдение за пациентами (n=29), которые имели ТЭЖ менее 6,4 мм, концентрации GDF-15 менее 1380,7 пг/мл и галектина-3 менее 11,0 нг/мл в крови до интервенционного лечения. Рецидив $\Phi\Pi$ после РЧА был зарегистрирован у 9/29 (34,5%), что в 2 раза меньше установленной ранее частоты рецидива $\Phi\Pi$ после РЧА у пациентов с МС – 49/78 (62,8%). Следовательно, установлено, что при использовании модели прогнозирования рецидивов $\Phi\Pi$ для персонализированного отбора пациентов с МС на РЧА с учетом пороговых значений таких биомаркеров, как ТЭЖ, концентрации GDF-15 и галектина-3 в крови, рецидивы данной аритмии в течение 12-ти месяцев наблюдались реже и риск повторных приступов $\Phi\Pi$ снижался на 51% (OP=0,49; 95% ДИ 0,28-0,87, p=0,005), что позволяет рассматривать полученный алгоритм для персонализированного отбора пациентов на данный вид лечения.

Алгоритм персонализированного выбора тактики лечения пациентов с ФП в сочетании с МС с использованием установленных предикторов, влияющих на эффективность антиаритмической фармакотерапии и РЧА представлен на рисунке 6 и включает следующие этапы: 1 — рекомендовать терапию контроля синусового ритма, антикоагулянтную терапию и лечение коморбидных заболеваний при наличии показаний; 2 — при определении показаний к антиаритмической фармакотерапии использовать критерии недостаточной эффективности; 3 — при наличии показаний к интервенционному лечению использовать факторы риска рецидива ФП после РЧА; 4 — при сохраняющихся показаниях к РЧА на фоне антиаритмической фармакотерапии в сочетании с модификацией факторов риска повторно оценить риск рецидива данной аритмии после РЧА.

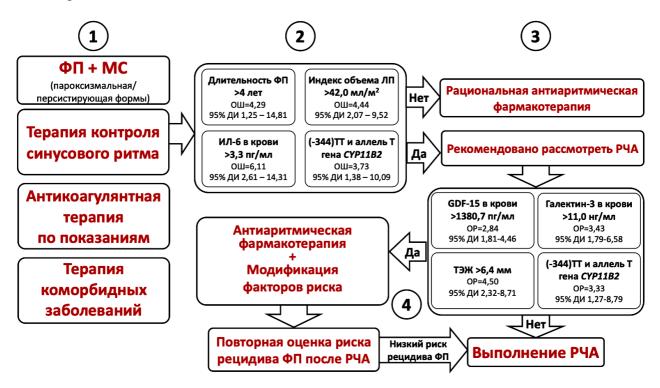


Рисунок 6 – Алгоритм персонализации выбора стратегии лечения пациентов с фибрилляцией предсердий в сочетании с метаболическим синдромом

Для оценки влияния $\Phi\Pi$ у пациентов с MC на риск развития комбинированной конечной точки, включающей 3 главных сердечно-сосудистых осложнения: сердечно-сосудистую смерть, нефатальный инфаркт и нефатальный инсульт (3 MACE), проведено 5-ти летнее проспективное наблюдение за пациентами с MC в сочетании с $\Phi\Pi$ и без данной аритмии (n=441).

В когорте больных с МС установлено, что комбинированная конечная точка у пациентов с $\Phi\Pi$ и МС регистрировалась чаще, чем у больных с МС без $\Phi\Pi$ (24/208 (11,5%) и 7/233 (3,0%), p=0,0001). Следовательно, $\Phi\Pi$ в когорте пациентов с МС увеличивала риск главных сердечнососудистых осложнений в 3,8 раза (OP=3,84; 95% ДИ 1,69-8,72, p=0,0001). Установлено, что 3 МАСЕ у пациентов с $\Phi\Pi$ и МС зарегистрирована у большего числа пациентов, чем у больных с $\Phi\Pi$ без МС (24/208 (11,5%) и 5/112 (4,5%), p=0,025). При расчете риска комбинированной конечной точки установлено, что наличие МС у пациентов с $\Phi\Pi$ увеличивало риск 3 МАСЕ в 2,6 раза (OP=2,59; 95% ДИ 1,01-6,59, p=0,036).

В связи с более высоким риском развития главных сердечно-сосудистых осложнений у пациентов с ФП и МС (n=208) был проведен анализ влияния клинико-анамнестических, антропометрических, лабораторных и инструментальных показателей для выявления предикторов неблагоприятного прогноза. По данным биномиального регрессионного анализа установлено, что увеличение числа компонентов МС (ОШ=2,32; 95% ДИ 1,31-4,11, p=0,003) и длительности анамнеза МС (ОШ=1,04; 95% ДИ 1,01-1,09, р=0,03) повышали вероятность 3 МАСЕ у пациентов с ФП и МС. Наличие у пациентов с МС постоянной формы ФП увеличивало вероятность 3 МАСЕ в 2,6 раз по сравнению с больными, имеющими пароксизмальную форму $\Phi\Pi$ (ОШ=2,64; 95% ДИ 1,55-4,48, p=0,0003). СД у пациентов $\Phi\Pi$, МС и зарегистрированными 3 МАСЕ встречался чаще, чем у пациентов без 3 МАСЕ (11/24 (45,8%)) и 43/184 (23,4%), p=0,019) и увеличивал вероятность 3 МАСЕ в 2,8 раз (ОШ=2,75; 95% ДИ 1,13-6,67, p=0,02). Уровень ТГ в плазме крови у пациентов с 3 MACE был выше, чем у больных с $\Phi\Pi$ и MC без 3 MACE (2.4 ± 1.1 и 2.0 ± 0.4 , p=0.021), и наличие гипертриглицеридемии у пациентов с ФП и МС увеличивало риск 3 МАСЕ (ОШ=2,86; 95% ДИ 1,03-8,23, p=0,03). Установлено, что диастолическая дисфункция ЛЖ у пациентов с ФП, МС и 3 МАСЕ встречались чаще, чем у пациентов без 3 МАСЕ (18/24 (75,0%) и 68/184 (36,9%), p=0,0001). Выявлено, что ТЭЖ у пациентов с зарегистрированным 3 МАСЕ была больше, чем у больных с ФП, МС и без 3 МАСЕ $(7,1\pm2,4 \text{ и } 6,2\pm1,8, p=0,021).$

По данным биномиального регрессионного анализа, наиболее значимое влияние на вероятность 3 МАСЕ у пациентов с ФП и МС установлено для ТЭЖ (ОШ=1,25; 95% ДИ 1,097-1,61, p=0,02). По результату биномиального регрессионного анализа установлено, что только повышение концентрации GDF-15 из числа изучаемых биомаркеров фиброза и воспаления у пациентов с ФП и МС значимо увеличивало риск 3 МАСЕ (ОШ=1,25; 95% ДИ 1,11-1,48, p=0,009). По результату ROC-анализа была построена кривая прогнозирования 3 МАСЕ у пациентов с ФП и МС в зависимости от концентрации GDF-15 (AUC=0,767 \pm 0,06, p=0,004) и определено пороговое значение 1881,0 пг/мл, превышение которого в 2,9 раз увеличивало риск 3 МАСЕ (OP=2,86; 95% ДИ 1,39-5,87, p=0,004).

ЗАКЛЮЧЕНИЕ

Распространенность фибрилляции предсердий и ожирения в когорте амбулаторных и госпитализированных в терапевтическую клинику пациентов за последние годы увеличилась. Наиболее частыми коморбидными состояниями при ФП, особенно у пациентов моложе 60 лет, являются АГ, ожирение, нарушения липидного и углеводного обмена, то есть компоненты метаболического синдрома, оказывающие негативное влияние на ремоделирование предсердий. Ожирение – основной компонент МС нередко развивается раньше, чем формируется МС и способствует хроническому системному воспалению И фиброзу предсердий. патогенетические изменения прогрессируют при развитии гемодинамических и метаболических нарушений, свойственных МС. Установлено, что концентрации в крови провоспалительных (СРБ, ИЛ-6, КТ-1) и профиброгенных (альдостерон, галектин-3, TGF-beta1, GDF-15, CTGF, PINP, PIIINP) факторов у больных с ФП в сочетании с МС выше, чем у пациентов с ФП без МС, у обследованных с МС без аритмии и выше, чем у здоровых. Толщина эпикардиальной жировой ткани, оказывающей локальное провоспалительное и профиброгенное воздействие на миокард у пациентов с сочетанием ФП и МС значительно больше, чем у больных с изолированной ФП или с изолированным МС. Синдром обструктивного апноэ во сне ассоциирован с большой

частотой ФП. СОАС тяжелой степени ассоциирован с увеличенной концентрацией GDF-15 в ответ на гипоксемию во сне, что, совместно с большой ТЭЖ способствует увеличению степени выраженности фиброза левого предсердия у пациентов с ФП. Формирование диффузного фиброза миокарда левого предсердия у больных с ФП при МС обусловлено гиперактивацией РААС при АГ и характеризуется увеличением продукции альдостерона, повышенной продукцией TGF-beta1 и галектина-3, способствующих синтезу проколлагенов с формированием фиброза миокарда. Можно полагать, что развитие диффузного фиброза миокарда при ФП и МС обусловлено также большой распространенностью генотипа GG(+915) и аллеля G гена TGFB1, ассоциированного с высокой концентрацией в крови G0 гена альдостеронсинтазы G1 гена альдостеронсинтазы G2 гена ассоциировано с более высокой концентрацией альдостерона в крови.

Таким образом, наличие метаболического синдрома способствует прогрессированию структурного ремоделирования сердца. Выраженность фиброза миокарда предсердий и его диффузное распределение обусловлено сочетанием трех и более компонентов метаболического синдрома и является значимым предиктором прогрессирования фибрилляции предсердий и недостаточного эффекта антиаритмической фармакотерапии и интервенционного лечения у больных с метаболическим синдромом.

выводы

- 1. Встречаемость фибрилляции предсердий у амбулаторных и госпитализированных в стационар Санкт-Петербурга пациентов составляет 8,9% и увеличилась в 1,3 раза за период с 2014 по 2018 гг.; наиболее часто фибрилляция предсердий сочетается с такими компонентами метаболического синдрома как артериальная гипертензия (89,3%) и ожирение (48,7%); на амбулаторном этапе 30,3% пациентов с фибрилляцией предсердий не получают антиаритмическую терапию, а 35,8% не получают антикоагулянтную терапию при наличии показаний.
- 2. Особенностями ремоделирования сердечно-сосудистой системы у пациентов с фибрилляцией предсердий в сочетании с метаболическим синдромом являются: повышение скорости распространения пульсовой волны, большие объемы обоих предсердий, диффузный и выраженный фиброз миокарда левого предсердия, а увеличение толщины эпикардиальной жировой ткани и наличие синдрома обструктивного апноэ сна повышает риск фибрилляции предсердий у пациентов с метаболическим синдромом.
- 3. Носительство генотипа GG(+915) гs1800471 варианта гена трансформирующего фактора роста-бета1 у пациентов с метаболическим синдромом ассоциировано с увеличением риска фибрилляции предсердий и повышением концентрации трансформирующего фактора роста-бета1 в крови; распределение генотипов гs1799998 варианта гена альдостеронсинтазы у больных с метаболическим синдромом в сочетании с фибрилляцией предсердий и без данной аритмии не различается, концентрация альдостерона в крови выше у обследованных, имеющих гомозиготное и гетерозиготное носительство Т аллеля гена *CYP11B2*.
- 4. Концентрации в крови провоспалительных (интерлейкин-6, С-реактивный белок, кардиотрофин-1) и профиброгенных (трансформирующий фактор роста-бета1, фактор роста соединительной ткани, ростовой фактор дифференцировки-15, альдостерон, галектин-3, N-концевые предшественники коллагена I и III типов) факторов у больных с фибрилляцией предсердий в сочетании с метаболическим синдромом выше, чем у пациентов с метаболическим синдромом без данной аритмии; длительность метаболического синдрома более 11 лет, повышение концентрации в крови галектина-3, N-концевого предшественника коллагена III типа, интерлейкина-6 и толщина эпикардиальной жировой ткани более 4,8 мм являются факторами риска развития фибрилляции предсердий; прогрессирование данной аритмии ассоциировано с увеличением числа компонентов метаболического синдрома и концентрацией N-концевого предшественника коллагена III типа выше 92,2 нг/мл.
- 5. Наличие диффузного и выраженного фиброза миокарда левого предсердия ассоциировано с наличием трех и более компонентов метаболического синдрома, с

увеличением толщины эпикардиальной жировой ткани, с высокими концентрациями альдостерона и галектина-3 в крови, с носительством генотипа (-344)ТТ и аллеля Т варианта гs1799998 гена альдостеронсинтазы, а у больных с синдромом обструктивного апноэ сна – с высокими концентрациями ростового фактора дифференцировки-15, N-концевых предшественников коллагена I и III типов в крови и с хронической ночной гипоксемией.

- 6. Вероятность неэффективности антиаритмической фармакотерапии у пациентов с фибрилляцией предсердий в сочетании с метаболическим синдромом повышается при длительности аритмии более 4-х лет, увеличении индекса объёма левого предсердия более 42,2 мл/м², повышении концентрации интерлейкина-6 в крови выше 3,3 пг/мл, при наличии генотипа (-344)ТТ и аллеля Т rs1799998 варианта гена альдостеронсинтазы.
- 7. После радиочастотной изоляции устьев легочных вен предикторами рецидива фибрилляции предсердий в течение 12-ти месяцев у пациентов с метаболическим синдромом являются: толщина эпикардиальной жировой ткани более 6,4 мм, концентрация в крови галектина-3 более 11,0 нг/мл, концентрация в крови ростового фактора дифференцировки-15 более 1380,7 пг/мл, носительство генотипа (-344)ТТ и аллеля Т rs1799998 варианта гена альдостеронсинтазы.
- 8. Наличие трех и более компонентов метаболического синдрома у больных с фибрилляцией предсердий увеличивает риск развития комбинированной конечной точки (сердечно-сосудистой смерти, нефатального инсульта и нефатального инфаркта) в 2,8 раза; риск комбинированной конечной точки у пациентов с метаболическим синдромом ассоциирован с числом компонентом метаболического синдрома, увеличением толщины эпикардиальной жировой ткани и повышением концентрации в крови ростового фактора дифференцировки-15.
- 9. Персонализированный подход к лечению пациентов с фибрилляцией предсердий в сочетании с метаболическим синдромом определяется длительностью аритмии, индексом объема левого предсердия, толщиной эпикардиальной жировой ткани и концентрацией в крови интерлейкина-6, галектина-3, ростового фактора дифференцировки-15 и носительством генотипа (-344)ТТ и аллеля Т варианта rs1799998 гена альдостеронсинтазы.

ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ

- 1. Пациентам с метаболическим синдромом рекомендовано измерять толщину эпикардиальной жировой ткани методом трансторакальной эхокардиографии, определять концентрацию в крови галектина-3, интерлейкина-6 и N-концевого предшественника коллагена III типа для оценки риска развития фибрилляции предсердий. Значение толщины эпикардиальной жировой ткани более 4,8 мм, концентрации в крови галектина-3 выше 8,4 нг/мл, интерлейкина-6 выше 4,0 пг/мл, N-концевого предшественника коллагена III типа выше 85,6 нг/мл позволяют отнести больного к категории высокого риска развития фибрилляции предсердий, что диктует необходимость активного диагностического поиска данной аритмии и требует комплексного контроля компонентов метаболического синдрома.
- 2. У пациентов с симптомной формой пароксизмальной и персистирующей фибрилляции предсердий в сочетании с метаболическим синдромом, имеющих генотип (-344)ТТ гена *CYP11B2*, объем левого предсердия более 42,0 мл/м2 и уровень интерлейкина-6 в крови выше 3,3 пг/мл эффективность антиаритмической фармакотерапии низкая и предпочтительным способом контроля синусового ритма может быть радиочастотная аблация с изоляцией устьев легочных вен.
- 3. Пациентам с симптомной формой пароксизмальной и персистирующей фибрилляции предсердий в сочетании с метаболическим синдромом носителям генотипа (-344)ТТ гена *CYP11B2*, имеющим толщину эпикардиальной жировой ткани более 6,8 мм, концентрацию в крови галектина-3 более 11,0 нг/мл и ростового фактора дифференцировки-15 более 1380,0 пг/мл, следует выбирать стратегию контроля частоты желудочковых сокращений или выполнять повторную изоляцию устьев легочных вен, так как у большинства таких пациентов первая радиочастотная аблация неэффективна.

ПЕРСПЕКТИВЫ ДАЛЬНЕЙШЕЙ РАЗРАБОТКИ ТЕМЫ

Результаты исследования могут послужить основой для фундаментальных и прикладных исследований в области молекулярной кардиологии и аритмологии у больных с фибрилляцией предсердий. В исследовании получены новые данные о патогенезе формирования фибрилляции предсердий, поэтому еще одним перспективным направлением лечения больных с метаболическим синдромом и с высокими уровнями в крови биомаркеров фиброза и воспаления, ассоциированными с выраженностью фиброза миокарда левого предсердия, можно рассматривать создание фармакологических препаратов, влияющих на провоспалительные и профиброгенные субстанции, циркулирующие в крови, что, наряду с модификацией факторов риска, сможет улучшить сердечно-сосудистый прогноз пациентов с метаболическим синдромом, в том числе с фибрилляцией предсердий.

СПИСОК РАБОТ, ОПУБЛИКОВАННЫХ ПО ТЕМЕ ДИССЕРТАЦИИ

Публикации в научных изданиях, рекомендованных Высшей аттестационной комиссией при Минобрнауки РФ и индексируемых в базах WoS и Scopus:

- 1. **Ионин, В.А.** Предикторы рецидива фибрилляции предсердий у пациентов с метаболическим синдромом после радиочастотной изоляции устьев легочных вен / В.А. Ионин, Е.Л. Заславская, Е.И. Барашкова, В.А. Павлова, А.М. Ананьин, А.Н. Морозов, Е.И. Баранова // Российский кардиологический журнал. 2022. Т. 27, № 3S. С. 5184.
- 2. **Ионин, В.А.** Фибрилляция предсердий у пациентов с синдромом обструктивного апноэ сна и метаболическим синдромом: роль цитокинов в развитии фиброза миокарда левого предсердия / В.А. Ионин, В.А. Павлова, А.М. Ананьев, Е.И. Барашкова, Е.Л. Заславская, А.Н. Морозов, Е.И. Баранова // Артериальная гипертензия. − 2022. − Т. 28, № 4. − С. 405-418.
- 3. **Ионин, В.А.** Молекулярные механизмы развития фибрилляции предсердий у пациентов с сахарным диабетом 2 типа: прогностическая роль биомаркеров фиброза и воспаления / В.А. Ионин, Е.И. Барашкова, А.М. Ананьин, В.А. Павлова, Е.Л. Заславская, Е.И. Баранова // Ученые записки СПбГМУ им. акад. И.П. Павлова. -2022. Т. 29, № 3. С. 91-100.
- 4. **Ионин, В.А.** Антикоагулянтная терапия у больных с неклапанной фибрилляцией предсердий в реальной клинической практике: необоснованное применение сниженных доз / В.А. Ионин, О.И. Близнюк, Е.И. Баранова, Е.В. Шляхто // Рациональная Фармакотерапия в Кардиологии. − 2021. − Т. 17, № 2. − С. 206-211.
- 5. **Ионин, В.А.** Биомаркеры воспаления, параметры, характеризующие ожирение и ремоделирование сердца, у пациентов с фибрилляцией предсердий и метаболическим синдромом / В.А. Ионин, Е.И. Барашкова, Е.Л. Заславская, С.Е. Нифонтов, Е.А. Баженова, О.Д. Беляева, Е.И. Баранова // Российский кардиологический журнал. − 2021. − Т. 26, № 3. − С. 4343.
- 6. **Ионин, В.А.** Какова роль профибротических и провоспалительных факторов в развитии фибрилляции предсердий, ассоциированной с компонентами метаболического синдрома? / В.А. Ионин, Е.И. Барашкова, В.А. Павлова, Г.И. Борисов, К.А. Аверченко, Е.Л. Заславская, Е.И. Баранова // Российский кардиологический журнал. − 2021. − Т. 26, № 11. − С. 4752.
- 7. **Ионин, В.А.** Молекулярные механизмы формирования фиброза миокарда левого предсердий у пациентов с фибрилляцией предсердий и метаболическим синдромом: какие биомаркеры использовать в клинической практике? / В.А. Ионин, Е.Л. Заславская, Е.И. Барашкова, В.А. Павлова, Г.И. Борисов, К.А. Аверченко, А.Н. Морозов, Е.И. Баранова, Е.В. Шляхто // Российский кардиологический журнал. 2021.-T.26, N 2.-C.4579.
- 8. **Ионин, В.А.** Факторы, ассоциированные с применением сниженных доз прямых оральных антикоагулянтов у больных с фибрилляцией предсердий / В.А. Ионин, О.И. Близнюк, В.А. Павлова, Е.И. Баранова // Ученые записки СПбГМУ им. акад. И.П. Павлова. 2021. Т. 28, № 1. С. 52-61.
- 9. Баранова, Е.И. Фибрилляция предсердий и один балл по шкале CHA2DS2VASc существует ли проблема в клинической практике? / Е.И. Баранова, В.А. Павлова, **В.А. Ионин**, Е.Ю. Петрищева, О.И. Близнюк, Е.Л. Заславская, И. Ма, Д.С. Скуридин, Е.В. Шляхто // Российский кардиологический журнал. -2020. -T. 25, № 3. -C. 42-48.
- 10. **Ионин, В.А.** Кардиотрофин-1 новый фактор риска фибрилляции предсердий у больных с висцеральным ожирением и метаболическим синдромом? / В.А. Ионин, Е.Л. Заславская, Е.Ю. Петрищева, Е.И. Барашкова, Д.С. Скуридин, А.Г. Филатова, Е.И. Баранова // Артериальная гипертензия. -2020. Т. 26, № 4. С. 383-390.

- 11. **Ионин, В.А.** Пожилой пациент с фибрилляцией предсердий в амбулаторной практике кардиолога: факторы риска аритмии и особенности профилактики тромбоэмболических осложнений / В.А. Ионин, Е.И. Барашкова, А.Г. Филатова, Е.И. Баранова // Клиническая геронтология. − 2020. − Т. 26, № 7-8. − С. 12-21.
- 12. **Ионин, В.А.** Стратегия контроля ритма у пациентов с фибрилляцией предсердий в реальной клинической практике / В.А. Ионин, Е.Л. Заславская, В.А. Павлова, Е.Ю. Петрищева, О.И. Близнюк, Г.И. Борисов, Д.С. Скуридин, Е.И. Баранова // Анналы аритмологии. − 2020. − Т. 17, № 2. − С. 118-125.
- 13. **Ионин, В.А.** Фибрилляция предсердий в когорте амбулаторных пациентов Санкт-Петербурга: встречаемость, факторы риска, антиаритмическая терапия и профилактика тромбоэмболических осложнений / В.А. Ионин, Е.И. Барашкова, А.Г. Филатова, Е.И. Баранова, Е.В. Шляхто // Артериальная гипертензия. − 2020. − Т. 26, № 2. − С. 192-201.
- 14. Петрищева, Е.Ю. Клинические особенности фибрилляции предсердий у больных артериальной гипертензией и ожирением: результаты ретроспективного наблюдательного исследования / Е.Ю. Петрищева, **В.А. Ионин**, О.И. Близнюк, В.А. Павлова, Д.С. Скуридин, И. Ма, Г.И. Борисов, Е.Л. Заславская, Е.И. Баранова // Артериальная гипертензия. − 2020. − Т. 26, № 4. − С. 391-399.
- 15. **Ионин, В.А.** Антикоагулянтная терапия и компоненты метаболического синдрома у пациентов с фибрилляцией предсердий в реальной амбулаторной клинической практике / В.А. Ионин, Е.Ю. Петрищева, Д.С. Скуридин, О.И. Близнюк, А.А. Иванова, А.Г. Филатова, И. Ма, Е.Л. Заславская, Е.И. Баранова // Медицинский совет. 2019. Т. 5. С. 60-63.
- 16. Заславская, Е.Л. Роль трансформирующего фактора роста-бета1 и галектина-3 в формировании фиброза левого предсердия у пациентов с пароксизмальной формой фибрилляции предсердий и метаболическим синдромом / Е.Л. Заславская, А.Н. Морозов, **В.А. Ионин**, И. Ма, С.Е. Нифонтов, Е.И. Баранова, С.М. Яшин, Е.В. Шляхто // Российский кардиологический журнал. − 2018. − № 2. − С. 60-66
- 17. Заславская, Е.Л. Эпикардиальная жировая ткань и трансформирующий фактор роста бета1 факторы риска фибрилляции предсердий у пациентов с метаболическим синдромом? / Е.Л. Заславская, **В.А. Ионин**, С.Е. Нифонтов, А.Н. Морозов, С.М. Яшин, Е.И. Баранова, Е.В. Шляхто // Артериальная гипертензия. − 2018. − Т. 24, № 3. − С. 281-292.
- 18. Ма, И. Полиморфные варианты G/C+915 трансформирующего фактора роста бета 1 и фибрилляция предсердий у пациентов с метаболическим синдромом / И. Ма, **В.А. Ионин**, Е.Л. Заславская, А.С. Улитина, А.А. Пантелеева, О.Д. Беляева, С.Н. Пчелина, Е.И. Баранова // Артериальная гипертензия. -2018. -T. 24, № 1. -C. 93-100.
- 19. Ма, И. С(-344)Т-полиморфизм гена альдостеронсинтазы, риск метаболического синдрома и фибрилляции предсердий у жителей Северо-Западного региона России / И. Ма, А.С. Улитина, **В.А. Ионин**, Е.Л. Заславская, В.В. Мирошникова, А.А. Пантелеева, О.Д. Беляева, Е.А. Баженова, О.А. Беркович, С.Н. Пчелина, Е.И. Баранова // Ученые записки СПбГМУ им. акад. И.П. Павлова. − 2016. Т. 23, № 2. С. 46-49.
- 20. **Ionin, V.A.** Galectin-3, N-terminal Propeptides of Type I and III Procollagen in Patients with Atrial Fibrillation and Metabolic Syndrome / V.A. Ionin, E.I. Baranova, E.L. Zaslavskaya, E.Y. Petrishcheva, A.N. Morozov, E.V. Shlyakhto // Int. J. Mol. Sci. − 2020. − Vol. 21, № 16. − P. 5689.

Публикации в других изданиях

- 21. **Ионин, В.А.** Предикторы прогнозирования рецидива фибрилляции предсердий у пациентов с метаболическим синдромом после изоляции устьев легочных вен / В.А. Ионин, Е.Л. Заславская, Е.И. Барашкова, В.А. Павлова, А.М. Ананьин, А.Н. Морозов, Е.И. Баранова // Российский национальный конгресс кардиологов 2023. Сборник тезисов. Москва, 2023. С. 90.
- 22. **Ионин, В.А.** Фибрилляция предсердий: от этиологии к тактике лечения. Учебно-методическое пособие / В.А. Ионин, Е.И. Баранова, Е.А. Баженова, И.С. Бродская, Е.Л. Заславская, Д.С. Скуридин; под ред. д.м.н., проф. Ю.Ш. Халимова. Санкт-Петербург: РИЦ ПСПбГМУ, 2023. 44 с.
- 23. **Ионин, В.А.** Фиброз миокарда левого предсердия и факторы риска фибрилляции предсердий у пациентов с синдромом обструктивного апноэ во сне: новые предикторы прогноза / В.А. Ионин, В.А. Павлова, Е.И. Барашкова, О.И. Близнюк, А.М. Ананьин, Е.И. Баранова // Российский национальный конгресс кардиологов 2023. Сборник тезисов. Москва, 2023. С. 487.
- 24. **Ионин, В.А.** Влияние артериальной гипертензии и ожирения на молекулярные механизмы развития фибрилляции предсердий в когорте пациентов с метаболическим синдромом / В.А. Ионин, В.А. Павлова, Е.И. Барашкова, Г.И. Борисов, Е.Л. Заславская, Е.И. Баранова // Материалы Российского национального конгресса кардиологов. Казань, 2022. С. 104.

- 25. **Ионин, В.А.** Мультифакторное прогнозирование степени выраженности фиброза миокарда левого предсердия у пациентов с фибрилляцией предсердий и метаболическим синдромом / В.А. Ионин, Е.Л. Заславская, А.Н. Морозов, В.А. Павлова, Е.И. Барашкова, С.М. Яшин, Е.И. Баранова // Материалы Российского национального конгресса кардиологов. Казань, 2022. С. 60.
- 26. Баранова, Е.И. Антикоагулянтная терапия у больных с фибрилляцией предсердий: учебнометодическое пособие для клинических ординаторов по специальностям «кардиология», «терапия» и для врачей общей практики / Е.И. Баранова, **В.А. Ионин**, О.С. Колесник, А.А. Кацап, Е.В. Лебедева, Е.А. Полякова; под ред. д.м.н., академика РАН Е.В. Шляхто. Санкт-Петербург: РИЦ ПСПбГМУ, 2021. 45 с.
- 27. **Ионин, В.А.** Взаимосвязь толщины эпикардиального жира с ФНО-альфа, ИЛ-6 и СРБ в плазме крови у пациентов с фибрилляцией предсердий и метаболическим синдромом / В.А. Ионин, Е.И. Барашкова, Д.С. Скуридин, В.А. Павлова, Е.Л. Заславская, Е.И. Баранова // Материалы Российского национального конгресса кардиологов. Российский кардиологический журнал. Санкт-Петербург, 2021. С. 119.
- 28. Баранова, Е.И. Фибрилляция предсердий и метаболический синдром (глава в руководстве) / Е.И. Баранова, **В.А. Ионин** // Руководство по аритмологии : учебное пособие / под ред. Е.В. Шляхто, А.Ш. Ревишвили, Д.С. Лебедева. Санкт-Петербург, 2019. 580 с. С. 239-243.
- 29. **Ионин, В.А.** Профиброгенные факторы, жесткость сосудистой стенки и диастолическая дисфункция левого желудочка у пациентов с артериальной гипертензией, ожирением и фибрилляцией предсердий / В.А. Ионин, Д.С. Скуридин, Е.Ю. Петрищева, Е.Л. Заславская, И. Ма, А.Г. Филатова, О.И. Близнюк, А.А. Иванова, Е.А. Баженова, А.Ю. Бабенко, Е.И. Баранова, Е.В. Шляхто // Российские дни сердца: VII образовательный форум. Сборник тезисов. Санкт-Петербург, 2019. С. 235.
- 30. **Ионин, В.А.** Ассоциация полиморфизма C(+915)G гена *TGFB1* и трансформирующего фактора роста-бета1 с риском фибрилляции предсердий у пациентов с метаболическим синдромом / В.А. Ионин, И. Ма, Е.Л. Заславская, А.С. Улитина, С.Н. Пчелина, О.А. Беркович, Е.И. Баранова // Тезисы Санкт-Петербургского аритмологического форума. Трансляционная медицина. 2018. Приложение № 2. С. 21
- 31. **Ionin, V.** Biomarkers of fibrosis and inflammation in patients with metabolic syndrome and atrial fibrillation: what are the differences in molecular mechanisms in hypertension and obesity? / V. Ionin, E. Barashkova, V. Pavlova, G. Borisov, K. Averchenko, E. Baranova // Journal of Hypertension. 2022. Vol. 40, Suppl. 1. P. e72.
- 32. **Ionin, V.** Arterial Stiffness, Galectin-3, TGF-Beta1 And Diastolic Dysfunction In Patients With Atrial Fibrillation / V. Ionin, D. Skuridin, E. Petrisheva, E. Zaslavskaya, E. Polyakova, O. Belyaeva, E. Baranova, E. Shlyakhto // Atherosclerosis. 2019. Vol. 287. P. e62-e63.
- 33. **Ionin, V.A.** Profibrogenic biomarkers and severity of left atrial fibrosis in patients with atrial fibrillation and metabolic syndrome: is it possible to predict the effectiveness of therapy? / V.A. Ionin, E.L. Zaslavskaya, A.N. Morozov, D.S. Skuridin, E.Yu Petrishcheva, Y. Ma, S.M. Yashin, E.I. Baranova, E.V. Shlyakhto // European Heart Journal. 2019. Vol. 40, Suppl. 1. P. ehz745.0609.
- 34. **Ionin, V.** Electroanatomical mapping of atrial fibrillation, epicardial fat and atrial fibrosis in patients with metabolic syndrome / V. Ionin, E. Zaslavskaya, Y. Ma, A. Morozov, S. Yashin, O. Listopad, S. Nifontov, E. Baranova, E. Shlyakhto // Journal of Hypertension. 2018. Vol. 36. P. e15.
- 35. **Ionin, V.** Visceral adipose tissue, inflammation and fibrosis in patients with atrial fibrillation and metabolic syndrome / V. Ionin, E. Zaslavskaya, Y. Ma, A. Morozov, E. Polyakova, S. Nifontov, K. Malikov, O. Listopad, O. Belyaeva, S. Yashin, E. Baranova, E. Shlyakhto // Atherosclerosis. 2018. Vol. 275. P. e172-e173.
- 36. Ma, Y. C(-344)T polymorphism gene aldosterone synthase (*CYP11B*), serum aldosterone and association with atrial fibrillation in metabolic syndrome patients / Y. Ma, **V. Ionin**, A. Ulitina, S. Pchelina, E. Bazhenova, E. Zaslavskaya, O. Belyaeva, O. Berkovich, E. Baranova // Journal of Hypertension. 2017. Vol. 35. P. e203.
- 37. Ma, Yi. C(-915)G polymorphism gene of transforming growth factor 1 in patients with metabolic syndrome and atrial fibrillation / Yi Ma, **V.A. Ionin**, A.S. Ulitina, E.L. Zaslavskaya, S.N. Pchelina, E.A. Bazhenova, E.A. Polyakova, O.D. Belyaeva, E.I. Baranova, E.V. Shlyakhto // European Heart J. -2017. Vol. 38, Abstract Suppl. 1.-P.760.

СПИСОК ИСПОЛЬЗОВАННЫХ СОКРАЩЕНИЙ

ААТ АВК АГ АД АКТ АО ДИ ИАГ ИБС ИМ ИММ ЛП ЛПВП ЛПНП МНО МС ОНМК ОР ОТ ОШ ПЖ ПОАК ПП РААС	 антиаритмическая терапия антагонисты витамина К артериальная гипертензия артериальное давление антикоагулянтная терапия абдоминальное ожирение доверительный интервал индекс апноэ-гипопноэ ишемическая болезнь сердца интерлейкин-б инфаркт миокарда индекс массы миокарда левого желудочка индекс массы тела кардиотрофин-1 кардиореспираторное мониторирование левое предсердие липопротеин высокой плотности международное нормализованное отношение метаболический синдром острое нарушение мозгового кровообращения относительный риск окружность талии отношение шансов правый желудочек прямые оральные антикоагулянты правое предсердие ренин-ангиотензин-альдостероновая система 	COAC CPE CPIIB TUA TTI TЭЖ TЭО ФВ ЛЖ ФНО- альфа ФІІ XCH ЧСС AUC CAVI CTGF EHRA GDF-15 MACE PINP PIIINP ROC	 синдром обструктивного апноэ во сне С-реактивный белок скорость распространения пульсовой волны транзиторная ишемическая атака тиреотропный гормон толщина эпикардиального жира тромбоэмболические осложнения фракция выброса левого желудочка фактор некроза опухолей альфа фибрилляция предсердий хроническая сердечная недостаточность частота сердечных сокращений площадь под кривой сердечно-лодыжечный сосудистый индекс фактор роста соединительной ткани European Heart Rhythm Association фактор дифференцировки роста-15 большие неблагоприятные сердечно-сосудистые события N-концевой предшественник коллагена I типа N-концевой предшественник коллагена III типа Receiver Operating Characteristic (функциональная характеристика приемника) сатурация кислорода в крови
РААС РЧА СД	– ренин-ангиотензин-	SpO ₂ TGF- beta1	127